• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on Principle and Methods of Large-scale Causal Infrerence Based on Nonlinearity

Research Project

Project/Area Number 17K00305
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Intelligent informatics
Research InstitutionOsaka University

Principal Investigator

Washio Takashi  大阪大学, 産業科学研究所, 教授 (00192815)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords統計的因果推論 / 因果解析 / 機械学習 / データマイニング / 回帰解析 / 非線形性
Outline of Final Research Achievements

There is an increasing need to understand the mechanism of large-scale systems by analyzing big data by statistical causal inference. However, its practical principles and methods have been established only for large-scale systems that are linear and have non-Gaussian noise. This research achieved (1) establishment of a new principle for estimating the causal relationship between many observation variables in a non-linear system with high accuracy, (2) development of statistical causal inference methods for large-scale systems by further extending the new principle, (3) basic performance verification using large-scale artificial data, and (4) practical performance verification using real-world data. We developed practical principles and methods for a wide range of large-scale nonlinear systems though these studies. Furthermore, we presented these results in major international conferences and international journals, and spread the breakthrough method of statistical causal reasoning.

Academic Significance and Societal Importance of the Research Achievements

開発した因果推論手法は対象系の非線形性に基づき、データの非線形回帰残差の大小のみで変数間の因果関係を推定できる。これは変数とノイズの独立性の推定に基づく従来の因果推論の枠組みと全く異なる。この新原理により、ノイズの性質や変数とノイズの独立性、交絡変数の有無に係わらず因果関係を一意かつ高速に推定できる。本提案原理は学術的に独創的かつ基礎的であり、本分野の世界的研究動向に新しい方向性を与えている。
実世界の殆どの対象系は何等かの非線形性を有し、本開発手法は実用的にも広範な対象のメカニズム解析に適用可能である。今後、物理学、化学、生物学、各種産業の現象解析や設計にて重要な役割を担うと期待される。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (7 results)

All 2019 2018 2017 Other

All Int'l Joint Research (3 results) Journal Article (3 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (1 results) (of which Int'l Joint Research: 1 results)

  • [Int'l Joint Research] Max Planck Institute(ドイツ)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Max Planck Institute(ドイツ)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] マックスプランク研究所(ドイツ)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Analysis of cause-effect inference by comparing regression errors2019

    • Author(s)
      Blobaum Patrick、Janzing Dominik、Washio Takashi、Shimizu Shohei、Scholkopf Bernhard
    • Journal Title

      PeerJ Computer Science

      Volume: 5 Pages: e169-e169

    • DOI

      10.7717/peerj-cs.169

    • Related Report
      2019 Annual Research Report 2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Cause-Effect Inference by Comparing Regression Errors2018

    • Author(s)
      Patrick Bloebaum, Dominik Janzing, Takashi Washio, Shohei Shimizu, Bernhard Schoelkopf
    • Journal Title

      Proceedings of Machine Learning Research

      Volume: 84 Pages: 900-909

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Error asymmetry in causal and anticausal regression2017

    • Author(s)
      Blobaum Patrick、Washio Takashi、Shimizu Shohei
    • Journal Title

      Behaviormetrika

      Volume: 44 Issue: 2 Pages: 491-512

    • DOI

      10.1007/s41237-017-0022-z

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Machine Learning Independent of Population Distributions for Measurement2017

    • Author(s)
      Takashi Washio, Gaku Imamura and Genki Yoshikawa
    • Organizer
      DSAA2017: 4th IEEE International Conference on Data Science and Advanced Analytics
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi