• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Efficient learning algorithm utilizing internal fluctuation of the brain

Research Project

Project/Area Number 17K00338
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Soft computing
Research InstitutionKyoto University (2018-2019)
Osaka University (2017)

Principal Investigator

Teramae Jun-nosuke  京都大学, 情報学研究科, 准教授 (50384722)

Co-Investigator(Kenkyū-buntansha) 松尾 直毅  大阪大学, 医学系研究科, 准教授 (10508956)
Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywords脳 / 自発活動 / 海馬 / 機械学習 / 人工知能 / 確率 / シナプス可塑性 / 確率的情報処理 / 場所細胞 / 記憶痕跡細胞 / 学習 / 記憶 / 局所回路 / シナプス結合 / ゆらぎ
Outline of Final Research Achievements

Analyzing simultaneous recordings of a large population of neurons in CA1 of awake animals before, during, and after acquisitions of episodic memories, we revealed various features of neural activities that presumably characterize engram neurons. We also succeeded in developing a biologically plausible learning algorithm of neural networks that utilizing stochastic behaviors of neurons and synapses in the cortical circuit. We found that the learning algorithm consistently accounts for various experimental findings of the brain, solves many known limitations of existing learning rules of neural networks, and provides the most efficient neural coding recently discovered in rodent cortical networks. Our results suggest that synapses and neurons in the cortex cooperatively implement the most efficient learning or stochastic computation.

Academic Significance and Societal Importance of the Research Achievements

脳の神経細胞及びシナプス結合が示す持続的な確率的挙動に着目することで、ニューラルネットワークに対する脳型の新たな学習アルゴリズムの開発に成功した。このアルゴリズムは既存の学習アルゴリズムの様々な問題点を解決できることが示されており、さらに生物学的妥当性も極めて高いと考えられるため、脳型の人工知能チップや、ニューロモルフィックデバイスの開発などに有用であると期待されるほか、脳の基礎的な動作原理の解明として生命科学にも大きな波及効果を持つと期待される。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Products Report
  • Research Products

    (20 results)

All 2023 2020 2019 2018 2017

All Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results) Presentation (16 results) (of which Int'l Joint Research: 9 results,  Invited: 1 results) Patent(Industrial Property Rights) (2 results)

  • [Journal Article] Highly Heterogeneous Excitatory Connections Require Less Amount of Noise to Sustain Firing Activities in Cortical Networks2018

    • Author(s)
      Kada Hisashi、Teramae Jun-nosuke、Tokuda Isao T.
    • Journal Title

      Frontiers in Computational Neuroscience

      Volume: 12 Pages: 1-12

    • DOI

      10.3389/fncom.2018.00104

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Computational Neuroscience: Mathematical and Statistical Perspectives2018

    • Author(s)
      Kass Robert E.、Amari Shun-Ichi、Arai Kensuke、Brown Emery N.、Diekman Casey O.、Diesmann Markus、Doiron Brent、Eden Uri T.、Fairhall Adrienne L.、Fiddyment Grant M.、Fukai Tomoki、Gr?n Sonja、Harrison Matthew T.、Helias Moritz、Nakahara Hiroyuki、Teramae Jun-nosuke、et.al
    • Journal Title

      Annual Review of Statistics and Its Application

      Volume: 5 Issue: 1 Pages: 183

    • DOI

      10.1146/annurev-statistics-041715-033733

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] 大脳皮質の二重の確率性に基づく生物学的に妥当な学習アルゴリズムと最適表現2020

    • Author(s)
      寺前順之介
    • Organizer
      日本物理学会第75回年次大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 確率的教師あり学習における自発活動による破滅的忘却の抑制2020

    • Author(s)
      遠藤大輔, 寺前順之介
    • Organizer
      日本物理学会第75回年次大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 確率的教師あり学習モデルにおける短期シナプス可塑性2020

    • Author(s)
      南拓也, 寺前順之介
    • Organizer
      日本物理学会第75回年次大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] エングラムセルが表現するエピソード記憶のダイナミクス2020

    • Author(s)
      高蔵蓮, 小林曉吾, 松尾直毅, 寺前順之介
    • Organizer
      日本物理学会第75回年次大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Calcium imaging of hippocampal CA1 neurons during contextual fear memory encoding, retrieval, and extinction2019

    • Author(s)
      Kobayashi K, Takakura R, Teramae J, Matsuo N
    • Organizer
      The 42nd Annual Meeting of the Japan Neuroscience Society
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Calcium imaging of hippocampal CA1 neurons during contextual fear memory encoding, retrieval, and extinction2019

    • Author(s)
      Kobayashi K, Takakura R, Teramae J, Matsuo N
    • Organizer
      The 18th Annual Meeting of Molecular and Cellular Cognition Society
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Calcium imaging of hippocampal CA1 neurons during contextual fear memory encoding, retrieval, and extinction2019

    • Author(s)
      Kobayashi K, Takakura R, Teramae J, Matsuo N
    • Organizer
      The 49th Annual Meeting of Society for Neuroscience, Chicago
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Supervised Learning Rule as a Stabilization Mechanism of Arbitral Fixed Points of Hidden Neurons2018

    • Author(s)
      Jun-nosuke Teramae
    • Organizer
      The 28th Annual Conference of the Japanese Neural Network Society
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Noise Robustness and Generalization of Bayesian Neural Networks with Lognormal Synaptic Weights2018

    • Author(s)
      Thom_s Rodrigues Crespo, Jun-nosuke Teramae, Naoki Wakamiya
    • Organizer
      The 28th Annual Conference of the Japanese Neural Network Society
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Validity of the Flat Minima Approach to Understand Generalization of Deep Learning2018

    • Author(s)
      Tsuyoshi Tatsukawa, Jun-nosuke Teramae, Naoki Wakamiya
    • Organizer
      The 28th Annual Conference of the Japanese Neural Network Society
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Reinforcement Learning for Visual Attention with Scalable Size of Attentional Field2018

    • Author(s)
      Yutaro Murata, Jun-nosuke Teramae, Naoki Wakamiya
    • Organizer
      The 28th Annual Conference of the Japanese Neural Network Society
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Biologically Plausible Learning Method with Minimizing Gap of Local Energy in Asymmetric Neural Network2018

    • Author(s)
      Futa Tomita, Jun-nosuke Teramae, Naoki Wakamiya
    • Organizer
      The 28th Annual Conference of the Japanese Neural Network Society
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 局所エネルギー差最小化による非対称結合下での学習アルゴリズム2018

    • Author(s)
      富田風太, 寺前順之介, 若宮直紀
    • Organizer
      日本物理学会
    • Related Report
      2017 Research-status Report
  • [Presentation] 不動点化としての脳型の教師あり学習アルゴリズム2018

    • Author(s)
      寺前順之介, 若宮直紀
    • Organizer
      日本物理学会
    • Related Report
      2017 Research-status Report
  • [Presentation] Layer specificity of acquired memory duration in multilayer LSTM networks2017

    • Author(s)
      K. Hatanaka, J. Teramae, and N. Wakamiya
    • Organizer
      The 2017 International Symposium on Nonlinear Theory and Its Application (NOLTA 2017)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 再帰的な選択的注意モデルにおける注意領域サイズの強化学習2017

    • Author(s)
      村田悠太朗, 寺前順之介, 若宮直紀
    • Organizer
      電子情報通信学会NC研究会
    • Related Report
      2017 Research-status Report
  • [Patent(Industrial Property Rights)] ニューラルネットワークの学習方法、ニューラルネットワークの生成方法、学習済装置、携帯端末装置、学習処理装置及びコンピュータプログラム2023

    • Inventor(s)
      寺前 順之介
    • Industrial Property Rights Holder
      京都大学
    • Industrial Property Rights Type
      特許
    • Acquisition Date
      2023
    • Related Report
      Products Report
  • [Patent(Industrial Property Rights)] ニューラルネットワークの学習方法、ニューラルネットワークの生成方法、 学習済装置、携帯端末装置、学習処理装置及びコンピュータプログラム2019

    • Inventor(s)
      寺前順之介
    • Industrial Property Rights Holder
      寺前順之介
    • Industrial Property Rights Type
      特許
    • Industrial Property Number
      2019-064222
    • Filing Date
      2019
    • Related Report
      2018 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2025-03-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi