• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Reaction-diffusion network with asymmetric connection, and its application to motion and disparity detection

Research Project

Project/Area Number 17K00341
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Soft computing
Research InstitutionYamaguchi University

Principal Investigator

NOMURA Atsushi  山口大学, 教育学部, 教授 (40264973)

Co-Investigator(Kenkyū-buntansha) 岡田 耕一  山口大学, 大学教育機構, 講師 (50452636)
水上 嘉樹  山口大学, 大学院創成科学研究科, 准教授 (60322252)
Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywordsステレオアルゴリズム / 非線形素子 / ニューロンモデル / FitzHugh-Nagumo / 反応拡散アルゴリズム / 非対称結合 / オクルージョン / 力学系アプローチ / 両眼立体視 / コンピュータビジョン / 視覚系 / 反応拡散 / 視覚情報処理 / エッジ検出 / ステレオ視差検出 / 結合系 / 数値計算 / 非線形画像処理 / 興奮・抑制 / 静止パターン / 神経回路網 / 非線形反応
Outline of Final Research Achievements

We have proposed a stereo algorithm that detects stereo disparity distribution from a pair of stereo images. The algorithm utilizes a reaction-diffusion network consisting of FitzHugh-Nagumo neurons placed at three-dimensional grids of two-dimensional image plane and one-dimensional stereo disparity. A previous algorithm has uniform and symmetrical coupling strength among neighboring neurons of the network. In this research work, we proposed to impose asymmetrical coupling strength on the network and tried to solve the occlusion problem. This is intended for filling in disparity undetected areas from their neighboring disparity detected ones. By applying the proposed algorithm to a stereo image data set, we confirmed effectiveness in occlusion areas.

Academic Significance and Societal Importance of the Research Achievements

反応拡散アルゴリズムは、ノイズ除去やエッジ検出・領域分割など様々な画像処理・視覚情報処理機能の実現に応用されてきた。また類似のアルゴリズムとして拡散方程式を用いたものがあり、同様に様々な機能の実現に応用されてきた。しかし、従来のこれらのアルゴリズムでは、隣接素子の結合について非一様結合は試みられたものの、非対称結合までは考慮されていなかった。本研究成果は反応拡散アルゴリズムにおける非対称結合の有効性を指摘し、類似のアルゴリズムにおいてもその適用可能性を示唆するものであり、学術的意義がある。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (4 results)

All 2019 2018 2017

All Presentation (3 results) (of which Int'l Joint Research: 3 results) Book (1 results)

  • [Presentation] Initial Conditions of Reaction-Diffusion Algorithm Designed for Image Edge Detection2019

    • Author(s)
      NOMURA Atsushi
    • Organizer
      The 16th International Conference on Image Analysis and Recognition
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Reaction-diffusion algorithm designed for image edge detection and its performance evaluation2018

    • Author(s)
      Atsushi NOMURA, Koichi OKADA, Yoshiki MIZUKAMI
    • Organizer
      The 12th International Conference on Computer Graphics, Visualization, Computer Vision and Image Processing, Part of the IADIS MCCSIS 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Novel approach of reaction-diffusion network for image processing and computer vision2017

    • Author(s)
      Atsushi Nomura, Koichi Okada and Yoshiki Mizukami,
    • Organizer
      The International Conference on Signal Processing and Multimedia Applications (SIGMAP 2017)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Book] デジタル動画像処理 : 理論と実践2018

    • Author(s)
      三池秀敏、古賀和利、橋本基、山田健仁、百田正広、長篤志、野村厚志、中島一樹
    • Total Pages
      202
    • Publisher
      大学教育出版
    • ISBN
      9784864295253
    • Related Report
      2018 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi