• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on neural network model of medial temporal lobe as brain of a rat type robot

Research Project

Project/Area Number 17K00344
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Soft computing
Research InstitutionKyushu Institute of Technology

Principal Investigator

Tateno Katsumi  九州工業大学, 大学院生命体工学研究科, 准教授 (00346868)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Keywordsスパイキングニューラルネットワーク / 内側側頭葉 / 嗅内皮質 / 海馬 / GPU / 8字迷路課題 / 嗅周皮質 / 痕跡恐怖条件づけ学習 / 痕跡恐怖条件付け学習 / ニューラルネットワーク / 場所細胞 / 時間細胞
Outline of Final Research Achievements

A library for parallel computation of spiking neural networks (SNN) has been prepared to provide an environment for high-speed computation of large-scale SNNs. Using this library, we created grid cells and head orientation cells in the entorhinal cortex and constructed SNNs that form place cells in the hippocampus. Adding an action selection SNN to the hippocampal SNN would allow for reward-dependent spatial learning. A SNN containing time cells was also created and spatial learning dependent on past pathways. With the high-speed computation now possible, connecting a mobile robot to the hippocampal SNN, place cells were formed in the hippocampal SNN in real-time based on the movement speed and head direction of the mobile robot. Time cell-like behavior of compartmental pyramidal cells in a SNN was also reproduced.

Academic Significance and Societal Importance of the Research Achievements

ニューラルネットワークの中でも、SNNを用いた研究が盛んに行われるようになってきた。誤差逆伝搬法のような人工ニューラルネットワークの理論がSNNに適用できるようになってきたことが理由である。一方で、SNNの計算は、連立微分方程式を数値解法により解くため、計算負荷が高い。本研究成果によるライブラリはGraphics Processing Unitを意識することなく、並列計算によりSNNを作成でき、高速な計算を容易にする点で意義がある。本研究は、海馬に特化し、空間の場所表現に関するSNNを対象としたが、別の脳領域のSNNの構築も可能であるので、より大規模で機能的なSNNを構築することを可能にする。

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (8 results)

All 2022 2021 2020 2018 2017

All Journal Article (3 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (5 results) (of which Int'l Joint Research: 3 results,  Invited: 1 results)

  • [Journal Article] Real-time computation of a large-scaled entorhinal-hippocampal spiking neural network using GPU acceleration2022

    • Author(s)
      Takada Kensuke、Tateno Katsumi
    • Journal Title

      Nonlinear Theory and Its Applications, IEICE

      Volume: 13 Issue: 2 Pages: 349-354

    • DOI

      10.1587/nolta.13.349

    • ISSN
      2185-4106
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 海馬の文脈依存情報および報酬に基づいて行動を制御する前頭前野モデル2020

    • Author(s)
      田上天羽・立野勝巳
    • Journal Title

      信学技報

      Volume: 119(381) Pages: 23-26

    • Related Report
      2019 Research-status Report
  • [Journal Article] 経路依存場所情報を符号化するスパイキングニューラルネットワークを用いた行動選択学習2020

    • Author(s)
      立野勝巳・髙田健介
    • Journal Title

      信学技報

      Volume: 119(471) Pages: 115-118

    • Related Report
      2019 Research-status Report
  • [Presentation] Real-time computation of a large-scaled entorhinal-hippocampal spiking neural network using GPU acceleration2021

    • Author(s)
      Kensuke Takada and Katsumi Tateno
    • Organizer
      The 2021 NonLinear Science Workshop
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 海馬の経路依存場所細胞を再現するスパイキングニューラルネットワークモデル2020

    • Author(s)
      立野 勝巳
    • Organizer
      異分野融合ワークショップ「脳型情報処理によるロボットラーニングの技術革新」
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Effects of synaptic properties on time cell-like firing based on attractor dynamics2018

    • Author(s)
      Kensuke Takada, Katsumi Tateno
    • Organizer
      The 11th FENS Forum of Neuroscience
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Attractor transitions for time cell-like elapsed time dependent activity in a hippocampal CA1-CA3 network model2017

    • Author(s)
      Kensuke Takada, Katsumi Tateno
    • Organizer
      Neuroscience 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 海馬神経回路においてセル・アセンブリから生成される経時依存的発火に関する計算機シミュレーション2017

    • Author(s)
      高田 健介、立野 勝巳
    • Organizer
      第27回日本神経回路学会全国大会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi