• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on behavior learning for a single-seat personal mobility vehicle capable of traversing rough terrain

Research Project

Project/Area Number 17K00364
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Intelligent robotics
Research InstitutionWakayama University

Principal Investigator

Nakamura Takayuki  和歌山大学, システム工学部, 教授 (50291969)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
KeywordsPU-GAN / LaserVAE / 深層強化学習A2C / SRCNN / DQN / DDQN / 不整地環境モデリング / GAN / NEAT / 不整地環境計測 / 不整地走行戦略の自動獲得 / データ融合による動作学習
Outline of Final Research Achievements

In this research project, we aimed to develop an automatic learning method for a single-seat personal mobility vehicle (PMV) to learn the action sequences (generation of combinations of wheel and leg actions) for various driving conditions such as flat roads, uneven terrain and several steps. To realize this, we confirmed that (1) the PMV's surrounding environment can be sensed by a 3D laser scanner (hereafter referred to as 3D Lidar), and more dense 3D data (point cloud data) can be generated from sparse 3D data (point cloud data) by using the PU-GAN method, and that (2) the simulated PMV can automatically learn the step override motion in a simulation environment with one step using the deep reinforcement learning algorithm (A2C).

Academic Significance and Societal Importance of the Research Achievements

PMVは,高齢者を含めた移動困難者のQOLを向上させる移動支援機器として普及が期待されているが,都市環境においても整備されていない段差は数多く存在する.本研究で開発した手法が実用化できれば,整備されていない環境中を踏破できる能力を持ったPMVの普及が進み,PMVの生産という新製造業を創出できると考えられ,社会的な意義が大きい.
本研究で開発した手法により,数段の階段を踏破できるような能力をPMVに与えることができ,高速な車輪モードから低速な脚動作モードへの滑らかな切り替わりなどが実現できるようになると考えられる.このようなソフトウェアを搭載したPMVは,類似の開発例がなく,学術的な意義も大きい.

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (5 results)

All 2019 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Remarks (4 results)

  • [Journal Article] LaserVAE による特徴量生成とその特徴量に基づいた大域自己位置推定2019

    • Author(s)
      脇田翔平,中村恭之,八谷大岳
    • Journal Title

      計測自動制御学会論文集

      Volume: 55 Pages: 476-483

    • NAID

      130007679337

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Remarks] 一人乗り電気自動車を対象とした不整地走行戦略の自動学習システムの研究

    • URL

      http://web.wakayama-u.ac.jp/~ntakayuk/PMV-motion-learn-j.htm

    • Related Report
      2019 Annual Research Report
  • [Remarks] 代表者のこれまでの研究

    • URL

      http://www.wakayama-u.ac.jp/~ntakayuk/research-j.html

    • Related Report
      2019 Annual Research Report 2018 Research-status Report 2017 Research-status Report
  • [Remarks] 果樹等を対象とした非定常物体モデリングの研究

    • URL

      http://www.wakayama-u.ac.jp/~ntakayuk/non-stat-obj-j.htm

    • Related Report
      2018 Research-status Report 2017 Research-status Report
  • [Remarks] 大域的2Dスキャンマッチングのための特徴記述子の提案

    • URL

      http://www.wakayama-u.ac.jp/~ntakayuk/cif-j.htm

    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi