A multiscale model of the vascular system based on cell physiology and biophysics
Project/Area Number |
17K00412
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Life / Health / Medical informatics
|
Research Institution | Aichi Prefectural University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 血管内皮細胞 / 血管平滑筋細胞 / 数理モデル / 動脈硬化 / 血流動態モデル / 反応性充血 / シミュレーション / FMD / RH-PAT / 血管 / シミュレーション解析 / 生体生命情報学 / 生物物理 / 血管系 |
Outline of Final Research Achievements |
Endothelial function is considered to be impaired at an early phase of atherosclerosis. The flow-mediated dilation (FMD) test is used to assess the endothelial function. FMD is induced by the wall shear stress exerted by blood flow on endothelial cells. However, the details of the response are not still clear because the path of signal transduction is highly complicated. In this study, we developed a mathematical model that integrates endothelial and smooth muscle cells. We evaluated the model by comparing the results obtained through simulations and experiments on FMD. We demonstrated that the model is applicable for the simulation of the dynamics of intracellular ion movements to analyze the physiological mechanisms and sequence of endothelial function.
|
Academic Significance and Societal Importance of the Research Achievements |
血管の機能低下は脳血管疾患をはじめ多くの疾患を引き起こし、生活に多大な影響を及ぼすことから、その主な要因である動脈硬化の早期診断が重要な課題となっている。本研究では血管を構成する細胞の特性を数理的に記述したコンピュータモデルを開発した。このモデルを用いて、血管機能検査によって得られる血流や血管径などの計測データをシミュレーション解析することによって、従来技術では分析不可能であった血管内の細胞レベルの特性を明らかにできる可能性があることがわかった。
|
Report
(5 results)
Research Products
(10 results)