Design of unique separation and reaction media with novel metal-organic host materials for the collection and degradation of persistent chemicals
Project/Area Number |
17K00596
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Environmental engineering and reduction of environmental burden
|
Research Institution | Nagoya University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | アドミセル / 界面活性剤 / 金属ナノ粒子 / ヘキサクロロベンゼン / 分解 / 有機溶融塩 / セルロース / 5-ヒドロキシメチルフルフラール / 有機無機複合体 / 環境浄化 / 難分解物質 / 分離 |
Outline of Final Research Achievements |
The present study was conducted with a view to developing highly efficient environmental purification systems that can allow the collection and subsequent degradation of persistent chemicals with novel metal-organic host materials. For this purpose, a promising material was prepared for the dechlorination of a typical persistent chemical, hexachlorobenzene. In addition, the one-pot conversion of a plant-origin biomass, cellulose, into a platform chemical of valuable materials, 5-hydroxymethylfurfural, was investigated. The formation of 5-hydroxymethylfurfural was observed in reaction media made of quaternary ammonium salts having chemical structures similar to those of surfactants used in the above-mentioned material.
|
Academic Significance and Societal Importance of the Research Achievements |
ヘキサクロロベンゼンは残留性有機汚染物質に関するストックホルム条約で規制対象物質になっている。水への溶解度は低いが、わずかに水中に残留しているものは潜在的に水循環を通じて環境中に拡散し、食物連鎖を経て問題が顕在化する恐れがあるため、その処理は重要である。また、5-ヒドロキシメチルフルフラールは高エネルギー密度燃料やプラスチックの原料になり得る化合物であり、石油資源の代替物として注目を集めている。草本系バイオマスの資源化処理ではセルロースの解重合反応を経由する合成経路が鍵となるが、セルロースは通常の溶媒には難溶で反応性が低く、この反応の高効率化は重要である。
|
Report
(4 results)
Research Products
(8 results)