• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Robust aesthetic design for customers with divers kanei

Research Project

Project/Area Number 17K00737
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Design science
Research InstitutionToyota Technological Institute

Principal Investigator

Kobayashi Masakazu  豊田工業大学, 工学部, 准教授 (40409652)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords感性工学 / 意匠設計 / ロバスト設計 / 多目的最適化 / クラスタリング / 深層学習 / タグチメソッド / 人工ニューラルネットワーク / 畳み込みニューラルネットワーク / 敵対的生成ネットワーク / 応答曲面法 / 設計工学 / ロバスト最適化
Outline of Final Research Achievements

In this study, a robust optimal design method based on fuzzy clustering, the Taguchi method, and a multi-objective genetic algorithm was proposed to generate product aesthetics that satisfy all customers even if their Kansei is diverse. In the case study, the proposed method was applied to a design of a car front face for 100 subjects. The results shows that the proposed method can generate the design that was highly preferred by all customers while minimizing the variation of preference among customers.
The applicability of deep learning in Kansei engineering was also investigated, and it was shown that deep learning can learn and infer the relationships between product aesthetics and customer preferences, and can analyze the reasons for customer preferences.

Academic Significance and Societal Importance of the Research Achievements

提案手法を用いることで,デザイナーの知識・経験に基づくのではなく,顧客の声(アンケート)に基づく製品意匠設計が可能になった.また,提案手法は,顧客の感性のばらつきの影響を低減することができるため,工業製品のように多数の顧客を対象とする製品にも適用可能な点が新しい.
感性工学における深層学習の適用については,その適用可能性を示した点に加えて,大量のアンケートに回答しなければならないという顧客の負担や,選好や印象の評価を学習データにすることによって生じる学習データの不確実性,不正確性など,今後考慮すべき課題を明らかにした点が新しい.

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (8 results)

All 2021 2020 2019 2018

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 3 results) Presentation (5 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Product Recommendation Based on Analysis of Aesthetic Elements Used to Customer’s Favorite Products2021

    • Author(s)
      Masakazu Kobayashi, Tomoki Takeda
    • Journal Title

      Computer-Aided Design and Applications

      Volume: 18 (4) Issue: 4 Pages: 682-691

    • DOI

      10.14733/cadaps.2021.682-691

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Multi-objective Aesthetic Design Optimization for Minimizing the Effect of Variation in Customer Kansei2020

    • Author(s)
      Masakazu Kobayashi
    • Journal Title

      Computer-Aided Design and Applications

      Volume: 17(4) Issue: 4 Pages: 690-698

    • DOI

      10.14733/cadaps.2020.690-698

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Reuse of Kansei Evaluation Results for the Aesthetic Design of Different Types of Products2019

    • Author(s)
      Masakazu Kobayashi, Fumi Shibata
    • Journal Title

      Computer-Aided Design and Applications

      Volume: 16(1) Pages: 150-160

    • DOI

      10.14733/cadconfp.2018.16-20

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Study on optimal aesthetic design using CNN as an evaluator2020

    • Author(s)
      Masakazu Kobayashi
    • Organizer
      Asian Congress of Structural and Multidisciplinary Optimization 2020 (ACSMO2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 感性のばらつきを考慮したロバスト最適設計手法の提案2019

    • Author(s)
      長谷川峻己,小林正和
    • Organizer
      Designシンポジウム2019
    • Related Report
      2019 Research-status Report
  • [Presentation] Optimization of similarity indices among aesthetic elements for the recommendation system based on the evaluation history of various types of products2019

    • Author(s)
      Masakazu Kobayashi
    • Organizer
      13th World Congress of Structural and Multidisciplinary Optimization
    • Related Report
      2019 Research-status Report
  • [Presentation] 顧客の感性のばらつきを考慮した多目的最適意匠設計2018

    • Author(s)
      小林正和
    • Organizer
      最適化シンポジウム2018(OPTIS2018)
    • Related Report
      2018 Research-status Report
  • [Presentation] Optimal design of product aesthetics considering variation of customers' kanesi2018

    • Author(s)
      Masakazu Kobayashi
    • Organizer
      The Asian Congress of Structural and Multidisciplinary Optimization 2018
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi