Project/Area Number |
17K01374
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Biomedical engineering/Biomaterial science and engineering
|
Research Institution | Tokyo Denki University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
大越 康晴 東京電機大学, 理工学部, 准教授 (10408643)
本間 章彦 東京電機大学, 理工学部, 教授 (20287428)
荒船 龍彦 東京電機大学, 理工学部, 准教授 (50376597)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 毛細血管 / オルガノイド / 細胞凝集塊 / Scaffold / 水性二相系 / 浮遊培養 / 細胞組織 / 生体医工学 / 細胞・組織 |
Outline of Final Research Achievements |
In regenerative medicine, it is necessary to construct tissues from cells to regenerate functional organs. At present, it is difficult to construct organs of a size comparable to that of human organs. In this research, we applied an aqueous two-phase system (ATPS) that has been proposed for use as a two-dimensional cell patterning technology, to develop a new cell-based tissue construction platform. ATPS displays the excellent features of 1) allowing cells to be handled in a wet state at all times (which is less damaging), and 2) propagating molecular signaling via solvent. The system uses a culture medium (ATPS culture solution) that separates into the following two phases: (dextran (DEX) phase, and a polyethylene glycol (PEG) phase). Cells were suspended in droplets of the DEX phase. We then assessed the feasibility of cell aggregate formation by maintaining this cell suspension in the PEG phase.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究によって,毛細血管網が高い再現性で構築可能となれば,今後,再生医療分野における臓器再生技術に大きな進展をもたらすと予想される.また,毛細血管網が本方法にて発生,伸展するメカニズムが解明されれば学術的にも新規な知見であり,これは昨今のiPS細胞を用いた臓器再生や,細胞の3Dプリンティングや細胞シート工学等,他の細胞組織構築技術と併用することも可能な基盤技術となる.将来的には人の健康,QOL向上にもつながり,社会に貢献可能な独創的な技術である.
|