Construction of three-dimensional hard tissue with vascular network using a novel fusion process
Project/Area Number |
17K01396
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Biomedical engineering/Biomaterial science and engineering
|
Research Institution | Meiji University |
Principal Investigator |
Honda Michiyo 明治大学, 理工学部, 専任准教授 (20384175)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 骨再生 / 血管新生 / バイオマテリアル / スキャフォルド / 血管ネットワーク / 硬組織再生 |
Outline of Final Research Achievements |
The aim of this study is to construct bone-like tissue with three-dimensional structure by combination with biocompatible scaffold and periosteum-like sheet consisting of vascular endothelial cells and osteoblasts. The angiogenic proteins-loaded materials could enhance the cellular attachment through interaction with integrin and promote actin cytoskeletal reorganization. In the case of co-culture of osteoblasts and endothelial cells on a microfiber biomaterial, osteoblasts and endothelial cells could enhance and improve each other’s function such as osteoblastic differentiation and endothelial cell tube formation. These results were supported by the properties of the scaffold such as the fibrous and topological structures. This approach can provide the evidences for the effectiveness of the tissue-engineered bone with vascular networks by crosstalk between osteoblasts and endothelial cells and interaction between these cells and the scaffold.
|
Academic Significance and Societal Importance of the Research Achievements |
超高齢社会を迎えた我が国において、骨組織をはじめとする生体組織の再生はiPS細胞を含む幹細胞による生体の構築に大きく貢献することができる。将来的にはそれらの技術は国民の生活の質の向上に寄与することが期待できる。本研究では、組織再生において重要と位置付けられる血管構造を有する骨膜様組織の構築に成功した。ネットワーク構造を有する足場材料は、再生組織を構築する細胞と血管形成に必要な細胞が相互作用し得る環境を提供し、血管網を備えた機能的で移植可能なサイズを持つ骨膜様組織の作出を実現した。この技術は、骨折などを含む硬組織の再生に大きく貢献し得ると考える。
|
Report
(4 results)
Research Products
(21 results)