• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of The Health Process Model System based on State Transition Probability to utilize NDB Big Data

Research Project

Project/Area Number 17K01820
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Applied health science
Research InstitutionNagoya City University

Principal Investigator

Miyauchi Yoshiaki  名古屋市立大学, 大学院看護学研究科, 准教授 (70410511)

Co-Investigator(Kenkyū-buntansha) 西村 治彦  兵庫県立大学, 応用情報科学研究科, 教授 (40218201)
Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2017: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywordsビッグデータ / 状態遷移確率 / ビックデータ / 健診情報
Outline of Final Research Achievements

We reexamined the model structure and modified the program so that the health process model based on the state transition probability that we constructed earlier corresponds to the data structure of NDB. For the expression of the health status of the examinees, we used the binarization of the health examination data based on the health examination judgment standard value and the expression of the health condition of 16 states by logical sum. Next, in order to improve the accuracy and reliability of the health process model as the data is accumulated year by year, we have developed a mechanism to automatically calculate and update by applying AI technology. In addition, we worked on Android application development so that the examinees can utilize the health process model on a daily basis. By integrating them, the basic configuration of the "health process model system", which is the purpose, was realized.

Academic Significance and Societal Importance of the Research Achievements

特定健診をはじめとするデータヘルス計画における保健事業の成果として個人単位での健診等のデータが大規模に年々蓄積されていくNDBビックデータに親和性の高い保健指導サポートシステムを構築したことにより、NDBビックデータに基づいた高精度な健康セルフマネジメントを受診者自らが行うことができるようになると考えている。そして、これはデータヘルス計画推進への貢献のみならず、2035年の保健医療へ向けたイノベーションと情報基盤の整備と活用への貢献へつながるものと考えている。

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (11 results)

All 2021 2020 2019 2018 2017

All Journal Article (3 results) (of which Peer Reviewed: 2 results) Presentation (8 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Health State Transition Model by Binary Expression and Cubic Lattice Representation Corresponding to the Specific Health Checkup2021

    • Author(s)
      MIYAUCHI Yoshiaki、HASHIMOTO Norihiko、NISHIMURA Haruhiko
    • Journal Title

      International Journal of Affective Engineering

      Volume: 20 Issue: 2 Pages: 49-55

    • DOI

      10.5057/ijae.IJAE-D-20-00019

    • NAID

      130008032049

    • ISSN
      2187-5413
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Feature Analysis of Metabolic Syndrome in the Specific Health Checkup from Lifestyle Questionnaire Data2021

    • Author(s)
      HASHIMOTO Norihiko、MIYAUCHI Yoshiaki、NISHIMURA Haruhiko
    • Journal Title

      Transactions of Japan Society of Kansei Engineering

      Volume: 20 Issue: 1 Pages: 9-17

    • DOI

      10.5057/jjske.TJSKE-D-20-00036

    • NAID

      130007992089

    • ISSN
      1884-0833, 1884-5258
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 保健医療情報ビッグデータの利活用に向けて:特定健診データへのベイジアンネットワーク適用2020

    • Author(s)
      宮内義明, 西村治彦
    • Journal Title

      Precision Medicine

      Volume: 3 Pages: 86-90

    • Related Report
      2019 Research-status Report
  • [Presentation] ウエスト身長比に着目した特定健診でのメタボリック症候群の評価2021

    • Author(s)
      橋本紀彦, 宮内義明, 西村治彦
    • Organizer
      第16回日本感性工学会春季大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Design of Health State Transition Model Based on the Specific Health Checkup Using Binary Expression2020

    • Author(s)
      Yoshiaki MIYAUCHI, Norihiko HASHIMOTO, Haruhiko NISHIMURA
    • Organizer
      International Society of Affective Science and Engineering 2020
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 特定健診および特定保健指導に関連するベイジアンネットワ ークの構築と評価2019

    • Author(s)
      宮内義明, 橋本紀彦, 西村治彦
    • Organizer
      医用人工知能研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] 特定健診でのメタボ・非メタボを特徴付ける生活習慣の分析2019

    • Author(s)
      橋本紀彦, 宮内義明, 西村治彦
    • Organizer
      第21回日本感性工学会大会
    • Related Report
      2019 Research-status Report
  • [Presentation] 特定健診データに基づくメタボリック症候群への生活習慣の影響因子分析2018

    • Author(s)
      橋本紀彦,宮内義明,西村治彦
    • Organizer
      第38回医療情報学連合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 特定健診質問データを用いたメタボリック症候群と生活習慣因子に関する分析2018

    • Author(s)
      橋本紀彦,宮内義明,西村治彦
    • Organizer
      第13回日本感性工学会春季大会
    • Related Report
      2018 Research-status Report
  • [Presentation] ベイジアンネットワークを応用した特定健診対応セルフマネジメント・アプリの開発2018

    • Author(s)
      宮内義明,西村治彦
    • Organizer
      第13回日本感性工学会春季大会
    • Related Report
      2017 Research-status Report
  • [Presentation] 特定健診に対応した立方格子モデルを用いた生活習慣タイプによる健康状態遷移傾向の検討2017

    • Author(s)
      宮内義明,西村治彦
    • Organizer
      第37回医療情報学連合大会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi