• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Forecasting Using Non-linear Multivariate Time Series Models with Bayesian Stochastic Search Variable Selection Method and its Application to Macroeconmics

Research Project

Project/Area Number 17K03661
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Economic statistics
Research InstitutionUniversity of the Ryukyus

Principal Investigator

Katsuhiro Sugita  琉球大学, 国際地域創造学部, 教授 (50377058)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Keywords計量経済学 / 時系列分析 / 多変量時系列 / ベイズ統計学 / MCMC / 多変量時系列分析 / ベイズ法 / マルコフ連鎖モンテカルロ法 / 非線形時系列 / ベイズ計量経済学
Outline of Final Research Achievements

A VAR (Vector Auto Regression) model is often used for empirical studies for macroeconomic analysis or forecasting macroeconomic variables. However, one of the problem of using a VAR model is that VAR model often contains too many variables of which are insignificant. In this research, I examine the forecasting performance of Bayesian SSVS (Stochastic search variable selection) method to remove insignificant variables in the model for model selection.I showed that the SSVS method improve the performance of the time series forecasting by using aritificially generated stationary or non-stationary data.

Academic Significance and Societal Importance of the Research Achievements

研究成果の学術的意義として、多変量時系列モデルにおいてより高い予測精度をもたらすSSVS法の利便性を示したことにある。このメソッドは汎用性があり多くのモデルに応用できるので、これからの時系列予測や計量分析に役立つという意義がある。

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (3 results)

All 2019 2018

All Journal Article (3 results)

  • [Journal Article] Forecasting with Vector Autoregressions using Bayesian Variable Selection Methods: Comparison of Direct and Iterated Methods2019

    • Author(s)
      Katsuhiro Sugita
    • Journal Title

      Ryukyu Economics Working Paper Series

      Volume: No.2 Pages: 118-118

    • Related Report
      2019 Research-status Report
  • [Journal Article] Forecasting with Vector Autoregressions by Bayesian Model Averaging2019

    • Author(s)
      Katsuhiro Sugita
    • Journal Title

      Ryukyu Economics Working Paper Series

      Volume: No.3 Pages: 113-113

    • Related Report
      2019 Research-status Report
  • [Journal Article] Evaluation of Forecasting Performance Using Bayesian Stochastic Search Variable Selection in a Vector Autoregression2018

    • Author(s)
      Katsuhiro Sugita
    • Journal Title

      Ryukyu Economics Working Paper Series

      Volume: No.1 Pages: 119-119

    • Related Report
      2018 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi