• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Quantitative evaluations of fiscal and monetary policies effects in the US and Japan based on DSGE model

Research Project

Project/Area Number 17K03671
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Economic policy
Research InstitutionTohoku Gakuin University (2019-2020)
Tohoku University (2017-2018)

Principal Investigator

MATSUMAE Tatsuyoshi  東北学院大学, 経済学部, 准教授 (40780888)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
KeywordsDSGEモデル / 景気循環 / 経済政策 / マクロ経済学 / 計量経済学
Outline of Final Research Achievements

The research was carried out by extending the dynamic stochastic general Equilibrium (DSGE) model from both theoretical and empirical perspectives.
In a study that quantitatively evaluated the impact of financial market imperfections on the Japanese economy during the asset price bubble period, the prediction accuracy of investment data was improved over the entire sample period by building a DSGE model with financial friction. On the other hand, the prediction accuracy of consumption and inflation data depends on fluctuations in spreads between the policy rate and corporate borrowing rate, and especially drastic changes in monetary policy may reduce the prediction performance of the financial friction model.

Academic Significance and Societal Importance of the Research Achievements

金融市場の不完全性を考慮することがマクロ経済指標の予測改善に資するか否かを,資産価格バブル期の日本経済を対象に検証した.この研究の学術的新規性は,データの予測精度の観点から異なるふたつのモデルを対決させた点にある.通常は金融摩擦をモデルに取り込むことでデータの予測精度が高まることが期待されるが,政策金利を急激に変更した時期では,金融摩擦を考慮したとしても予測精度が改善されないことが実証された.政策当局は政策効果を事前に予期しておくことがもとめられるけれども,本研究の成果に基づけば,政策金利を大胆に変更する際は,金融当局においてもその実体効果を事前に把握することが困難であることが明らかとなった.

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (5 results)

All 2019 2018

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (4 results)

  • [Journal Article] Does a financial accelerator improve forecasts during financial crises? Evidence from Japan with prediction-pooling methods2019

    • Author(s)
      Hasumi Ryo、Iiboshi Hirokuni、Matsumae Tatsuyoshi、Nakamura Daisuke
    • Journal Title

      Journal of Asian Economics

      Volume: 60 Pages: 45-68

    • DOI

      10.1016/j.asieco.2018.10.005

    • Related Report
      2019 Research-status Report 2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Sources of the Great Recession: A Bayesian Approach of a Data-Rich DSGE model with Time-Varying Volatility Shocks2019

    • Author(s)
      松前龍宜
    • Organizer
      早稲田大学セミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] Impacts of Government Spending on Unemployment: Evidence from a Medium-scale DSGE Model2019

    • Author(s)
      松前龍宜
    • Organizer
      東北学院大学TG経済学セミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] Sources of the Great Recession: A Bayesian Approach of a Data-Rich DSGE model with Time-Varying Volatility Shocks2019

    • Author(s)
      松前龍宜
    • Organizer
      早稲田大学政治経済学術院セミナー(早稲田大学)
    • Related Report
      2018 Research-status Report
  • [Presentation] Sources of the Great Recession: A Bayesian Approach of a Data-Rich DSGE model with Time-Varying Volatility Shocks2018

    • Author(s)
      松前龍宜
    • Organizer
      Macroeconomics Workshop 2018 (東京大学)
    • Related Report
      2018 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi