• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Consumer Behavior Modeling with Big Data for Marketing Resource Allocation

Research Project

Project/Area Number 17K03988
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Commerce
Research InstitutionTohoku University

Principal Investigator

ISHIGAKI Tsukasa  東北大学, 経済学研究科, 准教授 (20469597)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywordsマーケティング / ビッグデータ活用 / ベイズモデリング / 推薦システム / ビッグデータ / 消費者行動モデリング / ベイズモデル / データベースマーケティング / 機械学習 / 階層ベイズモデル / パーソナライゼーション / マーケティング・オートメーション / 階層ベイズモデリング
Outline of Final Research Achievements

In this study, we conducted a consumer behavior modeling with big data to optimize marketing resource allocation. The results are summarized in three parts. 1. A consumer behavior model with big data has been developed. 2. We have organized types of issues that are solved to optimize the marketing resource allocation using the model. 3. We have developed recommender systems using big data.

Academic Significance and Societal Importance of the Research Achievements

学術的意義:大規模な潜在変数を採用したマーケティングモデルを開発・進展させた。そこでは、機械学習法とマーケティングモデルをベイズモデリングにより統合した確率的生成モデルを開発し、実データでの実証を行った。
社会的意義:マーケティング資源配分の最適化を議論した。加えて、推薦システムへの応用を行った。そこでは、推薦精度のみではなく、推薦の新規性やありきたりな推薦を行わないため新しい手法を開発した。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (7 results)

All 2019 2018

All Journal Article (5 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results,  Open Access: 2 results) Presentation (2 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] D2D-TM: A Cycle VAE-GAN for Multi-Domain Collaborative Filtering2019

    • Author(s)
      L. Nguyen, T. Ishigaki
    • Journal Title

      Proceedings of the 2019 IEEE International Conference on Big Data

      Volume: 1 Pages: 1175-1180

    • DOI

      10.1109/bigdata47090.2019.9006461

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Matching Novelty while Training: Novel Recommendation based on Personalized Pairwise Loss Weighting2019

    • Author(s)
      K. Lo, T. Ishigaki
    • Journal Title

      Proceedings of the 2019 IEEE International Conference on Data Mining

      Volume: 1 Pages: 468-477

    • DOI

      10.1109/icdm.2019.00057

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Collaborative Multi-key Learning with an Anonymization Dataset for a Recommender System2019

    • Author(s)
      L. Nguyen, T. Ishigaki
    • Journal Title

      Proceedings of the 2019 International Joint Conference on Neural Networks

      Volume: 1 Pages: 1-9

    • DOI

      10.1109/ijcnn.2019.8852157

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Personalized Market Response Analysis for a Wide Variety of Products from Sparse Transaction Data2018

    • Author(s)
      T. Ishigaki, N. Terui, T. Sato and G.M. Allenby
    • Journal Title

      International Journal of Data Science and Analytics

      Volume: 5-4 Issue: 4 Pages: 233-248

    • DOI

      10.1007/s41060-018-0099-9

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Domain-to-Domain Translation Model for Recommender System2018

    • Author(s)
      L. Nguyen, T. Ishigaki
    • Journal Title

      arXiv

      Volume: 1812.06229 Pages: 1-8

    • Related Report
      2018 Research-status Report
    • Open Access
  • [Presentation] Customer Data Analysis on Graph Signal Processing2019

    • Author(s)
      T. Ishigaki
    • Organizer
      International Workshop on Marketing and Data Science
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] レビューデータを用いたトピックモデルによる利用ホテル・利用場面・評判要因の同時分析2019

    • Author(s)
      酒井洋輔、五十嵐未来、石垣司
    • Organizer
      日本マーケティング・サイエンス学会、マーケティングの統計的モデリング研究部会
    • Related Report
      2019 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi