Quantitative Measurement of the Plasmon Resonance Induced Force
Project/Area Number |
17K05006
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Nanomaterials engineering
|
Research Institution | Institute of Systems, Information Technologies and Nanotechnologies (2018-2019) Kyushu University (2017) |
Principal Investigator |
Wang Pangpang 公益財団法人九州先端科学技術研究所, マテリアルズ・オープン・ラボ, 研究員 (50592010)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | ナノ力学 / ナノ粒子 / プラズモン共鳴 / 原子間力顕微鏡 / ナノインデンテーション / 自立膜 / 力-変形曲線 / 表面プラズモン共鳴 / 光誘起力 / フォース測定 / 弾性率 / ナノ粒子自立膜 / ナノ材料 |
Outline of Final Research Achievements |
This study aimed to develop a quantitative measurement method of weak photo-induced force generated by plasmon resonance in nanoscale and to clarify the influence of near-field light on the mechanical properties of nanomaterials. A free-standing monolayer of metal nanoparticles with localized plasmon properties was systemically studied as model material. The weak photo-induced force between nanoparticles were measured by nanoindentation method using atomic force microscope. The main research achievements contains: (1) The mechanical properties (Young's modulus etc.) of a self-standing monolayer of silver nanoparticles were measured in detail. (2) The mechanical response of the monolayer of silver nanoparticles (hard film) on a soft substrate were measured. (3) A physical model of mechanical interaction between organic molecules at nanoscale were proposed.
|
Academic Significance and Societal Importance of the Research Achievements |
ナノ構造の力学特性測定はこれまで解析手段では不十分であり、新たな技術と理論が必要である。本研究は、プラズモン特性を有する金属ナノ粒子自立膜をモデルとしてナノ構造の力学特性と光との関係の解明を目指していた。プラズモン共鳴による金属ナノ粒子自立膜の力学特性測定はこれまで研究されていなかった。本研究は、この切り口から様々な実験を設計し、ナノ粒子薄膜の力学特性を定量的測定に成功した。特に、ソフト基板上のハードなナノ粒子薄膜の力学的応答を測定できた。さらに、有機分子間の力学的相互作用の新しい力学モデルも提案した。本研究で得た成果はナノ材料の力学特性(ナノ力学)分野に貢献したと考えられる。
|
Report
(4 results)
Research Products
(8 results)