Project/Area Number |
17K05044
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Crystal engineering
|
Research Institution | Meiji University (2019) Kanazawa Institute of Technology (2017-2018) |
Principal Investigator |
Ueda Osamu 明治大学, 研究・知財戦略機構(生田), 客員教授 (50418076)
|
Co-Investigator(Kenkyū-buntansha) |
富永 依里子 広島大学, 先端物質科学研究科, 講師 (40634936)
塩島 謙次 福井大学, 学術研究院工学系部門, 教授 (70432151)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | テラヘルツ波 / 光伝導 / アンテナ / 混晶半導体 / InGaAs / GaAsBi / 欠陥 / 透過電子顕微鏡 / 析出物 / 結晶評価 / テラヘルツ素子 / 結晶成長 / 格子欠陥 / 電子顕微鏡 |
Outline of Final Research Achievements |
In this study, we have investigated microstructures, defects, and electrical and optical properties of low-temperature MBE-grown (LTG) InGaAs and GaAsBi alloy semiconductors which are used for photo-conductivity antenna (PCA). First, we found that in undoped InGaAs As precipitates are generated at epi-sub interface after annealing. As for Be-doped InGaAs, As precipitates were found neither in the film nor in the dislocation line. Further, in undoped GaAsBi, surface segregation of Bi and formation of Bi-rich precipitates were found. From optical absorption experiment, GaAsBi does not have better electronic property than that of InGaAs, suggesting that development of novel GaAsBi-related materials are essential for fabricating excellent properties of the PCA devices. Finally, we have achieved 2D characterization of electrical properties of InGaAs and GaAsBi thin films.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、低温MBE成長したInGaAs, GaAsBi薄膜を高温での熱処理後に形成されるAs凝集体などの欠陥の形成と挙動および電気的・光学的特性への影響について初めて明らかにした。また、テラヘルツ光のセンシングを用いた各種システムへの社会実装を実現するためには、そのキーデバイスとなる高性能で、小型・低コストの光伝導アンテナの開発が必須であるが、本研究により新奇GaAsBi系材料の創製が不可欠であることを提案できた。
|