Project/Area Number |
17K05054
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Thin film/Surface and interfacial physical properties
|
Research Institution | The University of Electro-Communications |
Principal Investigator |
Suzuki Masaru 電気通信大学, 大学院情報理工学研究科, 教授 (20196869)
|
Co-Investigator(Kenkyū-buntansha) |
佐々木 成朗 電気通信大学, 大学院情報理工学研究科, 教授 (40360862)
三浦 浩治 愛知教育大学, 教育学部, 特別教授 (50190583)
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | ナノトライボロジー / 動摩擦 / エネルギー散逸 |
Outline of Final Research Achievements |
The purpose of this study is to clarify the relationship between the energy dissipation in nano-slide and the effective elastic force at the contact point with the surface molecules and their motility. In this study, we measured the frictional characteristics and calculated the model when the AMF probe was brought into contact with the sample surface on the crystal oscillator. From this study, the following points were clarified regarding nano-friction. 1) The effective viscosity coefficient of nano-friction on the gold surface was obtained for the first time. 2) In the nano-friction of the C60 single crystal, the energy dissipation of the rotation of the C60 molecule due to the slip of the probe was observed. 3) It was clarified that the temperature dependence of energy dissipation of nano-friction can be explained qualitatively by creep of the surface potential of the probe.
|
Academic Significance and Societal Importance of the Research Achievements |
微細加工技術の進歩により,ナノ・マイクロマシンの作製が可能となり,『固体-固体間が触合うときの動摩擦の制御は?』の問いが,工学的にも理学的にも興味を持たれている.一方,ナノスケールの視点からの動摩擦によるエネルギー散逸の機構の理解と制御は必ずしも明らかでない。本研究は,これらの問題にひとつの知見を与えるために,制御された表面でのナノすべりでの摩擦特性,特に動摩擦のエネルギー散逸を測定し,モデル計算と比較を行った。本研究は,ナノスケールの視点から動摩擦の制御に知見を与えるものである。
|