Development of the hybrid density functional theory on the real-space grid method and its implementation on massively parallel computers
Project/Area Number |
17K05138
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Computational science
|
Research Institution | Tohoku University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2017: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 超並列計算 / 実空間グリッド法 / 密度汎関数法 / Hartree-Fock交換エネルギー / FFT / CG / 実空間グリッド / HF交換エネルギー / 並列計算 / 3次元FFT / 実空間密度汎関数法 / 超並列化 / ポアソン方程式 / MPI / ハイブリッド汎関数 / 交換エネルギー |
Outline of Final Research Achievements |
In this subject we developed two types of implementation of the Hartree-Fock(HF) exchange energy using the real-space grid approach to achieve high efficiency in the parallel execution of the hybrid exchange functional in the density functional theory. We first reduce the problem of calculating the HF exchange energy to the solution of the Poisson equation presented on the discrete real-space grids. Then, the Poisson equations for the electrostatic potentials of the products of the orbital pairs were solved iteratively through the conjugate gradient (CG) method where the operation of Laplacian was parallelized by domain decomposition scheme. In the other approach, we adapted the three-dimensional fast Fourier transform (FFT), referred to as PFFT, to solve the Poisson equations. It was shown in the benchmark tests that the parallel execution with the FFT approach is faster than that using the CG method because a larger bandwidth can be made available in the parallel execution of FFT.
|
Academic Significance and Societal Importance of the Research Achievements |
密度汎関数法(DFT)は化学や物理の理論の分野で必須のツールであり、これを並列計算によって高速化することは、DFT法の応用範囲を拡張する上で重要である。DFT計算の精度を向上させる為には、Hartree-Fockの交換エネルギーを部分的に含む、ハイブリッド汎関数の使用が標準となっている。実空間グリッド基底はDFTの並列計算を高速化する上で極めて有効であることが実証されているが、HF交換ポテンシャルのような非局所な演算子の実行には不利である。本研究の遂行によって実空間グリッド基底によるハイブリッド汎関数の実行が高速化され、ひいては、機能性分子の合成や反応のメカニズムの解明に資する。
|
Report
(4 results)
Research Products
(18 results)