• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on uniqueness of holomorphic vertex operator algebras of central charge 24 by using reverse orbifold construction

Research Project

Project/Area Number 17K05154
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionTohoku University

Principal Investigator

Shimakura Hiroki  東北大学, 情報科学研究科, 准教授 (90399791)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords代数学 / 頂点作用素代数 / 正則頂点作用素代数 / 軌道体構成法 / リー代数 / リーチ格子 / 逆軌道体構成法 / 格子 / 二次形式 / 自己同型群
Outline of Final Research Achievements

The classification of holomorphic vertex operator algebras of central charge 24 is one of famous problems in vertex operator algebra theory. The 71 candidates have been constructed, and the remaining problem is to prove that the vertex operator algebra structure is uniquely determined by the Lie algebra structure of the weight one subspace.

At the beginning of this research project, there are the remaining 41 holomorphic vertex operator algebras of central charge 24 whose uniqueness have not been proved yet. The main result is to prove the uniqueness of the 11 cases by using the reverse orbifold construction. Combining the results by us and other researchers, we have proved the uniqueness of holomorphic vertex operator algebras of central charge 24 with non-trivial weight one subspaces.

Academic Significance and Societal Importance of the Research Achievements

中心電荷24の正則頂点作用素代数には様々な階数24の正定値のユニモジュラ偶格子との類似が観察されている。本研究の研究成果はその根拠の一つとなるものである。また、階数24の正定値のユニモジュラ偶格子の応用範囲は頂点作用素代数のみならず、代数幾何学、整数論、組合せ論、有限群論など多岐にわたっている。同様に、中心電荷24の正則頂点作用素代数の他分野への応用も期待されており、その際には今回の成果が役立つ。

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (21 results)

All 2021 2020 2019 2018 2017 Other

All Int'l Joint Research (6 results) Journal Article (7 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 6 results,  Open Access: 7 results) Presentation (8 results) (of which Int'l Joint Research: 5 results,  Invited: 8 results)

  • [Int'l Joint Research] Academia Sinica (台湾)(その他の国・地域(台湾))

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Universidade Federal Fluminense(ブラジル)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Rutgers University(米国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Academia Sinica(台湾)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] 中央研究院(台湾)(その他の国・地域(台湾))

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] 中央研究院(台湾)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Schellekens' list and the very strange formula2021

    • Author(s)
      van Ekeren Jethro、Lam Ching Hung、Moller Sven、Shimakura Hiroki
    • Journal Title

      Advances in Mathematics

      Volume: 380 Pages: 107567-107567

    • DOI

      10.1016/j.aim.2021.107567

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Inertia groups and uniqueness of holomorphic vertex operator algebras2020

    • Author(s)
      Ching Hung Lam, Hiroki Shimakura
    • Journal Title

      Transformation Groups

      Volume: 印刷中

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Automorphism groups of the holomorphic vertex operator algebras associated with Niemeier lattices and the -1-isometries2020

    • Author(s)
      Hiroki Shimakura
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 印刷中

    • NAID

      130007928933

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Reverse orbifold construction and uniqueness of holomorphic vertex operator algebras2019

    • Author(s)
      Ching Hung Lam, Hiroki Shimakura
    • Journal Title

      Transactions of the American Mathematical Society

      Volume: 372 Issue: 10 Pages: 7001-7024

    • DOI

      10.1090/tran/7887

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] On orbifold constructions associated with the Leech lattice vertex operator algebra2019

    • Author(s)
      LAM CHING HUNG、SHIMAKURA HIROKI
    • Journal Title

      Mathematical Proceedings of the Cambridge Philosophical Society

      Volume: 印刷中 Issue: 2 Pages: 261-285

    • DOI

      10.1017/s0305004118000658

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Orbifold constructions associated with the Leech lattice vertex operator algebra2018

    • Author(s)
      島倉裕樹
    • Journal Title

      数理解析研究所講究録

      Volume: 2086 Pages: 154-162

    • Related Report
      2018 Research-status Report
    • Open Access
  • [Journal Article] 71 holomorphic vertex operator algebras of central charge 242018

    • Author(s)
      C.H.Lam, H. Shimakura
    • Journal Title

      Bull. Inst. Math. Acad. Sin. (N.S.)

      Volume: 印刷中

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] On inertia groups and uniqueness of holomorphic vertex operator algebras of central charge 242020

    • Author(s)
      Hiroki Shimakura
    • Organizer
      Vertex Operator Algebras and Related Topics in Kumamoto
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On automorphism groups of the holomorphic VOAs associated with Niemeier lattices and the -1-isometries2019

    • Author(s)
      島倉裕樹
    • Organizer
      第36回代数的組合せ論シンポジウム
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Monster group and the Moonshine vertex operator algebra2019

    • Author(s)
      Hiroki Shimakura
    • Organizer
      Bilateral Workshop 2019 between NTHU and GSIS
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On automorphism groups of holomorphic VOAs of central charge 242019

    • Author(s)
      Hiroki Shimakura
    • Organizer
      Workshop on finite groups, vertex algebras and algebraic combinatorics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 中心電荷24の正則頂点作用素代数の分類について2018

    • Author(s)
      島倉裕樹
    • Organizer
      第63回代数学シンポジウム
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] リーチ格子頂点作用素代数と軌道体構成法2018

    • Author(s)
      島倉裕樹
    • Organizer
      第30 回有限群論草津セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Orbifold constructions associated with the Leech lattice vertex operator algebra2017

    • Author(s)
      島倉裕樹
    • Organizer
      代数的組合せ論および有限群・頂点作用素代数とその表現の研究
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Orbifold constructions associated with the Leech lattice vertex operator algebra2017

    • Author(s)
      H. Shimakura
    • Organizer
      One day workshop on VOA
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2017-04-28   Modified: 2022-08-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi