• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on infinite dimensional algebraic groups and Lie algebras, and application to quasi-periodic and aperiodic structures

Research Project

Project/Area Number 17K05158
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionUniversity of Tsukuba

Principal Investigator

Morita Jun  筑波大学, 数理物質系(名誉教授), 名誉教授 (20166416)

Project Period (FY) 2017-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords代数群 / リー代数 / 代数的K理論 / 局所アフィン・リー代数 / カッツ・ムーディ群 / スキーム / 四元数体 / 量子ビット / カッツ・ムーデイ群 / Kac-Moody 群 / 基本同値 / 群スキーム / 結晶構造 / 準周期構造 / 非周期構造 / 構造論 / 表現論 / アフィン・リー代数 / 単純群 / 乗法因子群 / 局所アフィン・ルート系 / 表現
Outline of Final Research Achievements

(1)The structure of K_2SL_2(R) was determined for several prime numbers p_1,...,p_n, where R = [1/p_1,...,1/p_n]. (2) We classified minimal locally affine Lie algebras. This is a joint work with Yoji Yoshii. (3) We characterized affine Kac-Moody groups using schemes and Galois descert. This is a joint work with A. Pianzola and T. Shibata. (4) We discussed some infinite root system obtained from H4 root systems in quaternion division ring, and obtained a new application to quantum bits. This is a joint work with Robert Moody.

Academic Significance and Societal Importance of the Research Achievements

何れも有限次元および無限次元の代数群とリー代数に関わる基本的な研究成果である。新たな知見も多く含み、数学的な価値は高く、意義深いと認めとられる。

Report

(7 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (12 results)

All 2023 2020 2018 Other

All Int'l Joint Research (6 results) Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (2 results) (of which Int'l Joint Research: 1 results,  Invited: 2 results)

  • [Int'l Joint Research] バルイラン大学(イスラエル)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] アルバータ大学(カナダ)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Poincare Institute(フランス)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Xiamen University(中国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Calicornia Institute of Technology(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] University of Alberta(カナダ)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Classification of minimal locally affine Lie algebras2023

    • Author(s)
      Morita Jun、Yoshii Yoji
    • Journal Title

      Journal of Algebra

      Volume: 616 Pages: 97-154

    • DOI

      10.1016/j.jalgebra.2022.11.004

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Chevalley groups over Dedekind domains and some problems for K_2(2,Z_S)2020

    • Author(s)
      Jun Morita
    • Journal Title

      Toyama Mathematical Journal

      Volume: 41 Pages: 83-122

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Simple Kac-Moody groups with trivial Schur multipliers2018

    • Author(s)
      Jun Morita
    • Journal Title

      Science China Mathematics

      Volume: 61 Issue: 2 Pages: 311-316

    • DOI

      10.1007/s11425-016-9170-1

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Discretization of SU(2) and the orthogonal group using icosahedral symmetries and the golden numbers2018

    • Author(s)
      Robert Moody, Jun Morita
    • Journal Title

      Communications in Algebras

      Volume: 46

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Chevalley groups over Dedekind domains and K2 groups2020

    • Author(s)
      Jun Morita
    • Organizer
      The second meeting for Study of Number Theory, Hopf Algebras and Related Topics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Kac-Moody algebras, groups and related topics2018

    • Author(s)
      森田純
    • Organizer
      Finite Groups, VOAs, and Related Topics 2018
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi