• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on random distribution and independence of L-functions

Research Project

Project/Area Number 17K05160
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionGunma University

Principal Investigator

Nagoshi Hirofumi  群馬大学, 大学院理工学府, 准教授 (70571165)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
KeywordsL-関数 / 普遍性定理 / 関数的独立性 / 値分布 / レルヒ・ゼータ関数 / セルバーグ・クラス / 独立性 / 稠密性 / ディリクレ級数 / 解析的数論 / ゼータ関数 / 保型形式
Outline of Final Research Achievements

In the theory of value-distribution of L-functions, Voronin discovered the so-called universality theorem and more generally joint universality theorem. We obtain various related results, which mean that L-functions are randomly distributed, from the view point of distribution of their values. We also various results on the independence of L-functions, using the theory of value-distribution of L-functions and the theory of uniform distribution. Some of these results are generalizations of previous ones.

Academic Significance and Societal Importance of the Research Achievements

数学において,整数論と呼ばれる分野がある。その分野において,ゼータ関数やL-関数と呼ばれる関数たちの様々な性質を調べることは,非常に重要である。例えば,リーマン・ゼータ関数に対するリーマン予想と呼ばれる予想は,数学において最も重要な予想たちの一つであると認識されている。本研究では,そのような関数たちに対して,値分布の観点から,互いのランダムな関係を意味する様々な結果を得た。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (4 results)

All 2019 2018

All Journal Article (3 results) (of which Open Access: 3 results,  Peer Reviewed: 2 results) Presentation (1 results) (of which Invited: 1 results)

  • [Journal Article] The Sato-Tate conjecture and functional differential independence of symmetric power L-functions2019

    • Author(s)
      Hirofumi Nagoshi
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2131 Pages: 71-76

    • NAID

      120006888061

    • Related Report
      2019 Annual Research Report
    • Open Access
  • [Journal Article] Non-universality of the Riemann zeta function and its derivatives when σ≧12019

    • Author(s)
      Hirofumi Nagoshi, Takashi Nakamura
    • Journal Title

      Journal of Approximation Theory

      Volume: 241 Pages: 57-62

    • DOI

      10.1016/j.jat.2019.01.006

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] On a certain set of Lerch’s zeta-functions and their derivatives2019

    • Author(s)
      Hirofumi Nagoshi
    • Journal Title

      Lithuanian Mathematical Journal

      Volume: 59 Issue: 1 Pages: 111-130

    • DOI

      10.1007/s10986-019-09433-0

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] The Sato-Tate conjecture and functional differential independence of symmetric power L-functions2018

    • Author(s)
      Hirofumi Nagoshi
    • Organizer
      Analytic Number Theory and Related Topics
    • Related Report
      2018 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi