• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mean Value theorems of error terms related to various objects in number theory

Research Project

Project/Area Number 17K05166
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionHamamatsu University School of Medicine

Principal Investigator

Furuya Jun  浜松医科大学, 医学部, 教授 (10413890)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords数論的誤差項 / 数論的関数 / 平均値定理 / 広義積分 / 漸近公式 / オイラー関数 / メビウス関数 / 約数関数の一般化 / 最大公約数 / オメガ評価 / ディリクレ級数
Outline of Final Research Achievements

In this research, we treat the mean value theorems for several types of number-theoretic error terms. These methods in this research are mainly intended to apply the classical theory of the mean value theorem to error terms defined as new types. Specifically, (1) We first make new types of arithmetical functions, and consider the asymptotic formula of the sums of this kind of functions. (2) We consider the mean value formula of the function E(x), which is the error terms in the asymptotic formula in (1). (3) We consider the explicit formula and the analytic properties of the improper integral containing classical error terms, or E(x) defined in (1).

Academic Significance and Societal Importance of the Research Achievements

本研究においては、新たなる対象に対して既存の理論の適用がどこまで可能であるか、また、適用するためにはどのような条件が必要であるか・新たなる理論の構築が必要な箇所はどこであるかの考察を行った。この考察により古典的な理論や近年の理論の発展の再考察が行えたため新たなる理論への足掛かりができたと位置づけられるものであり平均値定理の発展に寄与できる・寄与できる可能性を含む研究といえるものである。

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (5 results)

All 2021 2020 2018 2017

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (4 results)

  • [Journal Article] A note on the mean square of the greatest divisor of n which is coprime to a fixed integer k2021

    • Author(s)
      Jun Furuya, Makoto Minamide T, Miyu Nakano
    • Journal Title

      Indian Journal of Pure & Applied Mathematics

      Volume: 52 Issue: 4 Pages: 990-1003

    • DOI

      10.1007/s13226-021-00103-x

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Presentation] k と互いに素な最大公約数の二乗平均の誤差項について2020

    • Author(s)
      中野実優、古屋 淳、南出 真
    • Organizer
      日本数学会中国四国支部例会(岡山理科大学)
    • Related Report
      2019 Research-status Report
  • [Presentation] k と互いに素な約数の最大数の平均について2018

    • Author(s)
      井川祥彰、南出真、古屋淳、谷川好男
    • Organizer
      日本数学会中国・四国支部例会(山口大学)
    • Related Report
      2017 Research-status Report
  • [Presentation] On the number of k-free integers ≦ x which are coprime to m2018

    • Author(s)
      井川祥彰、南出真、古屋淳、谷川好男
    • Organizer
      日本数学会年会代数分科会(東京大学)
    • Related Report
      2017 Research-status Report
  • [Presentation] ゼータ関数の微分に関連した約数問題について2017

    • Author(s)
      南出真、古屋淳、谷川好男
    • Organizer
      日本数学会秋季総合分科会代数分科会(山形大学)
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi