• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A study of an algorithm to calculate lattice invariants by new reduction theory

Research Project

Project/Area Number 17K05170
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionOsaka University

Principal Investigator

WATANABE TAKAO  大阪大学, 理学研究科, 教授 (30201198)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords代数群 / 簡約理論 / スツルム語 / ディオファントス近似論 / 反復指数 / ラグランジュスペクトラム / マルコフスペクトラム / 複雑性 / 連分数 / 線形代数群 / 数論的部分群 / 基本領域 / 最短ベクトル / 格子 / エルミート定数
Outline of Final Research Achievements

In this study, the following two results were obtained. The first is the development of a calculation algorithm for a set of minimum points required to determine a zero-dimensional cell in the boundary of a fundamental domain of the arithmetic quotient for a general linear group defined over a rational number field. By applying Minkowski's reduction theory, we found a sharp evaluation of the components of matrices contained in a minimum point set, and devised an algorithm to determine the minimum point set based on this evaluation. The second is the determination of a gap and the determination of the maximum accumulate point in the set of values of exponents of repetitons for Sturmian words. The exponent of repetitons for an infinite word is a new quantity just introduced by Bougeaud and Kim in 2019, and our result pioneered its nature.

Academic Significance and Societal Importance of the Research Achievements

最小点集合を決定するアルゴリズムができたことで、0次元セルを計算するための道具が一つ整えられたことになる。今回の研究では、最小点集合から0次元セルを決定する方法についても考察したが、多変数の高次連立方程式を解く必要があり、このプロセスの効率的な計算は今後の課題である。スツルム語を規定する基本的なパラメーターの一つである傾きが反復指数にどのように影響するかを部分的に解明したことで、反復指数のとりうる値を限定することができる。反復指数はディオファントス近似論における無理数性指数と関連することがわかっているので、ディオファントス近似論にも応用が見込まれる。

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (3 results)

All 2020 2017

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (2 results)

  • [Journal Article] Appendix of "Fundamental domains of arithmetic quotients of reductive groups over number fields" by Lee Tim Weng2017

    • Author(s)
      Takao Watanabe
    • Journal Title

      Pacific Journal of Mathematics

      Volume: 290 Issue: 1 Pages: 164-167

    • DOI

      10.2140/pjm.2017.290.139

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Sturm語の反復指数の空隙2020

    • Author(s)
      渡部隆夫
    • Organizer
      日本数学会2020年秋季総合分科会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Sturmian wordの反復指数とSturmian b進数の超越性2020

    • Author(s)
      大中鈴絵
    • Organizer
      明治学院大学数論セミナー
    • Related Report
      2019 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi