• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Vertex operator algebras and modular differential equations

Research Project

Project/Area Number 17K05171
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionOsaka University

Principal Investigator

Nagatomo Kiyokazu  大阪大学, 情報科学研究科, 招へい准教授 (90172543)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords頂点作用素代数 / モジュラー微分方程式 / 指標 / 分類理論 / 保型形式 / モジュラー線型微分方程式 / 保型微分方程式 / 頂点作要素代数 / ベクトル値モジュラー形式 / モジュラー形式 / 頂点作用素代数の指標 / 一点関数
Outline of Final Research Achievements

We had worked on the classification problem of vertex operator algebras (simply VOAs). The sets of characters were expected to characterize VOAs. However, there are examples of VOAs whose have the same set of characters but they are not isomorphic. Therefore we intended the classification by using modular linear differential equations (MLDEs for short) since any set of characters of a VOA is a subspace of the space of solutions of an MLDE. We achieved the classification of the Virasoro VOA (the so-called the minimal model) under very mild conditions. Moreover, since it is very important to have a recipe to obtain MLDEs of higher order. We found that the Rankin-Cohen brackets give a general description of MLDEs. This result contributes to the theory of modular forms by giving a new differential operator which generalizes the Serre operation.

Academic Significance and Societal Importance of the Research Achievements

頂点作用素代数のモジュラー微分方程式を用いた分類は,国内外で前例がなく,その内容は高く評価されている。これは頂点作用素代数の理論において新しい研究分野を与え,多くの研究者が興味を持ち始めている。新しい研究分野を開拓することは困難を伴い,我々の研究成果がそれを与えたことは,国内外で広く認めらた事実であり,今後,この分野に重要な影響を与えると考えらられる。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (14 results)

All 2020 2019 2018 2017 Other

All Int'l Joint Research (5 results) Journal Article (6 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 6 results,  Open Access: 1 results) Presentation (3 results) (of which Int'l Joint Research: 3 results,  Invited: 3 results)

  • [Int'l Joint Research] Max-Planck Institute for Mathematics(ドイツ)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] ICTP(イタリア)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] マックスプランク数学研究所(ドイツ)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] ICTP(イタリア)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] University of California(米国)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Vertex operator algebras with central charge 8 and 162020

    • Author(s)
      G. Mason, K. Nagatomo, Y. Sakai
    • Journal Title

      Contemporary mathematics (accepted for publication)

      Volume: 14

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Pseudo-characters of the symplectic fermions and modular linear differential equations2020

    • Author(s)
      Y. Kurokawa, K. Nagatomo, Y. Sakai
    • Journal Title

      Contemporary mathematics (accepted for publication)

      Volume: -

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Vertex operator algebras with central charges 164/5 and 236/72020

    • Author(s)
      Y. Arike, K. Nagatomo,
    • Journal Title

      Communications in Number Theory and Physics (accepted for publication)

      Volume: -

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Vertex operator algebras, minimal models, and modular linear differential equations of order 42018

    • Author(s)
      Y. Arike, K. Nagatomo, Y. Sakai
    • Journal Title

      J. Math. Soc. Japan70

      Volume: 70 Pages: 1347-1373

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Lie algebras, vertex operator algebras, and related topics2017

    • Author(s)
      Y.~Arike, K.~Nagatomo, Y.~Sakai,
    • Journal Title

      Contemp.~Math., 695J. Algebra

      Volume: 695 Pages: 175-204

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] The third order modular linear differential equations,2017

    • Author(s)
      M.~Kaneko, K.~Nagatomo, Y.~Sakai, The third order modular linear differential equations, J. Algebra, \textbf{485}, 332--352 (2017).
    • Journal Title

      J. Algebra,

      Volume: 485 Pages: 332-352

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Vertex operator algebras whose dimensions of weight one spaces are 8 and 162019

    • Author(s)
      Kiyokazu Nagatomo
    • Organizer
      Vertex operator algebras and related topics
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Modular liner differential equations2018

    • Author(s)
      K. Nagatomo
    • Organizer
      Vertex operator algebras and related topics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Modular forms of rational weights2018

    • Author(s)
      K. Nagatomo
    • Organizer
      Vertex Operator Algebras, Number Theory and Related Topics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi