• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Computation of ideal qutients by transformation of acyclic complexes and its application

Research Project

Project/Area Number 17K05192
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionChiba University

Principal Investigator

Nishida Koji  千葉大学, 大学院理学研究院, 教授 (60228187)

Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords可換環 / シンボリック冪 / イデアル商 / 非輪状複体 / ヒルベルト係数 / シンボリックリース環 / Huneke の判定法
Outline of Final Research Achievements

The purpose of this research was to establish efficient methods for computing symbolic powers of ideals and apply them for studying symbolic Rees algebras. We first revised a technique for getting free resolutions of quotients of ideals transforming acyclic complexes which give free resolutions of ideals. Next, in the case where the rings are graded, studying the Hilbert coefficients of the quotient rings by homogeneous ideals which may coincide with the required symbolic powers, we found a method for checking whether the expected coincidences hold or not.

Academic Significance and Societal Importance of the Research Achievements

シンボリックリース環のネータ性はHilbertの第14問題と密接に関連しており、特に、体上の多項式環のイデアルに付随するシンボリックリース環で、非ネータなものを構成することが重要である。その為には、具体的に与えられたイデアルのシンボリック冪を計算する必要があるのだが、その様な計算を実行する実用的な手順はあまり知られていなかった。本研究では、多様なイデアルに対して適用可能な手法を提示することができ、この成果を未解決問題の解明にも活かせるのではないかと期待している。

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (10 results)

All 2022 2021 2019 2018 2017

All Journal Article (3 results) (of which Peer Reviewed: 2 results) Presentation (7 results) (of which Int'l Joint Research: 2 results,  Invited: 3 results)

  • [Journal Article] Finitely generated symbolic Rees rings of ideals defining certain finite sets of points in P^22021

    • Author(s)
      Kai Keisuke、Nishida Koji
    • Journal Title

      Journal of Algebra

      Volume: 587 Pages: 20-35

    • DOI

      10.1016/j.jalgebra.2021.07.024

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Infinitely generated symbolic Rees rings of space monomial curves having negative curves2019

    • Author(s)
      Kazuhiko Kurano and Koji Nishida
    • Journal Title

      Michigan Mathematical Journal

      Volume: 68 Pages: 409-445

    • Related Report
      2019 Research-status Report 2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Infinitely generated sybolic Rees rings of space monomial curves having negative curves2018

    • Author(s)
      Kazuhiko Kurano and Koji Nishida
    • Journal Title

      Michigan Mathematical Journal

      Volume: 印刷中

    • Related Report
      2017 Research-status Report
  • [Presentation] On the Hilbert coefficients of graded modules over graded rings2022

    • Author(s)
      西田康二
    • Organizer
      第43回 可換環論シンポジウム
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 次数付環上の次数付加群のヒルベルト係数について2022

    • Author(s)
      西田康二
    • Organizer
      可換環論の新しい融合セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Noetherian symbolic Rees rings of finite sets of points in P^22019

    • Author(s)
      西田康二
    • Organizer
      第41回可換環論シンポジウム
    • Related Report
      2019 Research-status Report
  • [Presentation] Finitely generated symbolic Rees rings defined by certain finite sets of points in P^22019

    • Author(s)
      西田康二
    • Organizer
      東京可換環論セミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] On the symbolic Rees rings for Fermat ideals2019

    • Author(s)
      Koji Nishida
    • Organizer
      1147th AMS Meeting, Special Session on Commutative Algebra
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] シンボリックリース環のネータ性について2018

    • Author(s)
      西田康二
    • Organizer
      第63回代数学シンポジウム
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] On the symbolic Rees rings for Fermat ideals2017

    • Author(s)
      西田 康二
    • Organizer
      第39回可換環論シンポジウム
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi