• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The theory of Harmonic maps and Gauge theory

Research Project

Project/Area Number 17K05230
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionMeiji University

Principal Investigator

Nagatomo Yasuyuki  明治大学, 理工学部, 専任教授 (10266075)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsゲージ理論 / ベクトル束 / 調和写像 / 正則写像 / モジュライ空間 / グラスマン多様体 / 接続 / 表現論 / 正則等長写像 / アインシュタイン・エルミート計量 / 剛性定理
Outline of Final Research Achievements

A generalization of theorem of Tsunero Takahashi and do Carmo-Wallach theory leads us to the concept of the terminal harmonic map into Grassmann manifolds. When the gauge condition is fixed, the terminal harmonic map is defined as the harmonic map satisfying the given gauge condition into Grassmannian of the lowest dimension. It has the rigidity and any harmonic map except the terminal one admits deformations.
The moduli space of holomorphic isometric immersion of algebraic manifolds into a complex quadric modulo gauge equivalence is a complex submanifold of a complex Euclidean space, which has a Kaehler structure with a circle action. Then the moduli space of those maps modulo image equivalence is the quotient of the moduli modulo gauge equivalence by the circle action.
Applying the theory, we obtain the explicit description of the moduli spaces of holomorphic isometric embeddings from the complex projective space and the complex Grassmannian of two-planes into complex quadrics.

Academic Significance and Societal Importance of the Research Achievements

1980年代から1990年代に至るまで、リーマン面を定義域とする射影空間や対称空間への調和写像に関する結果が多く出版されたが、その後はこの理論を使って成果を出すことが徐々に困難になってきたようである。また、1970年前後に出版された2論文(高橋の定理、do Carmo-Wallach理論)を一般化しようとする研究も多く存在したと思われるが、決定打は存在しなかったと言えるであろう。この状況で調和写像の理論をベクトル束の幾何学と結合した上で、高橋の定理の一般化がなされ、その応用として定義域の次元にかかわらない調和写像の一般論を展開し、その応用例を豊富に与えた本研究には大きな意義があると信じている。

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (17 results)

All 2022 2021 2020 2019 2018 2017 Other

All Int'l Joint Research (1 results) Journal Article (7 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 7 results) Presentation (9 results) (of which Int'l Joint Research: 3 results,  Invited: 7 results)

  • [Int'l Joint Research] Department of Geometry and Topology/Faculty of Mathematical Sciences/University of Valencia(Spain)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Holomorphic Isometric Embeddings of the Projective space into Quadrics2022

    • Author(s)
      Yasuyuki Nagatomo
    • Journal Title

      Geometriae Dedicata

      Volume: 216, 3 Issue: 3

    • DOI

      10.1007/s10711-022-00689-4

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Holomorphic maps into Grassmann manifolds (Harmonic maps into Grassmann manifolds III),2021

    • Author(s)
      Yasuyuki Nagatomo
    • Journal Title

      Annals of Global Analysis and Geometry

      Volume: 60 Issue: 1 Pages: 33-63

    • DOI

      10.1007/s10455-021-09765-6

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Vector bundles, isoparametric functions and Radon transforms on symmetric spaces2019

    • Author(s)
      Yasuyuki NAGATOMO, Masaro Takahashi
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 56 Pages: 675-711

    • NAID

      120006768697

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Vector bundles, isoparametric functions and Radon transforms on symmetric spaces2019

    • Author(s)
      Yasuyuki Nagatomo, Masaro Takahashi
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 印刷中

    • NAID

      120006768697

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Moduli of Einstein-Hermitian harmonic mappings of the projective line into quadrics2018

    • Author(s)
      Oscar Macia, Yusuyuki Nagatomo
    • Journal Title

      Annals of Global Analysis and Geometry

      Volume: 53 Pages: 503-520

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Killing vector fields on complex hypersurfaces in the complex projective space2018

    • Author(s)
      Isami Koga, Yasuyuki Nagatomo, Masaro Takahashi
    • Journal Title

      Kyushu Journal of Mathematics

      Volume: 72 Pages: 231-237

    • NAID

      130007411757

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Holomorphic isometric embeddings of the projective line into Quadrics2017

    • Author(s)
      Oscar Macia, Yasuyuki Nagatomo, Masaro Takahashi
    • Journal Title

      Tohoku Mathematical Journal

      Volume: 69 Pages: 525-545

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] 複素射影直線から複素グラスマン多様体への同変の分類2022

    • Author(s)
      古賀勇、長友康行
    • Organizer
      日本数学会 幾何学分科会 一般講演
    • Related Report
      2021 Annual Research Report
  • [Presentation] Harmonic mappings into Grassmannians2020

    • Author(s)
      Yasuyuki NAGATOMO
    • Organizer
      18th OCAMI-RIRCM Joint DG workshop on ``Differential geometry of Submanifolds in Symmetric spaces and related problems''
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Harmonic Mappings into Grassmannians2019

    • Author(s)
      Yasuyuki NAGATOMO
    • Organizer
      The second Taiwan-Japan Joint Conference on Differential Geometry
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 複素射影直線から複素グラスマン多様体への同変調和写像の構成と分類2019

    • Author(s)
      古賀勇、長友康行
    • Organizer
      日本数学会 幾何学分科会 一般講演
    • Related Report
      2018 Research-status Report
  • [Presentation] 複素射影直線から複素2次超曲面への調和写像2018

    • Author(s)
      長友康行
    • Organizer
      福岡大学微分幾何研究集会2018
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 複素射影直線から複素2次超曲面への調和写像2018

    • Author(s)
      長友康行
    • Organizer
      部分多様体幾何とリー群作用2018
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 複素射影直線から階数$2$のグラスマン多様体への調和写像2017

    • Author(s)
      長友康行
    • Organizer
      部分多様体論・湯沢2017
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Harmonic maps of the complex projective line to complex hyperquadrics2017

    • Author(s)
      Yasuyuki NAGATOMO
    • Organizer
      The 21st Internationalworkshop on Hermitian symmetric spaces & Submanifolds
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Holomorphic isometric embeddings maps into Grassmannians of rank 22017

    • Author(s)
      長友康行
    • Organizer
      東京大学複素解析セミナー
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi