• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Elucidation of the geometric meaning of surface knot invariants defined by quandles and its application

Research Project

Project/Area Number 17K05242
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionTokyo Gakugei University

Principal Investigator

TANAKA Kokoro  東京学芸大学, 教育学部, 准教授 (70448950)

Project Period (FY) 2017-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords低次元トポロジー / 曲面結び目 / カンドル / 結び目 / トポロジー / bridge trisection / bridge trisection表示 / バイカンドル
Outline of Final Research Achievements

Surface knots were studied using quandle algebras and the following main results were obtained. (1) We explored a diagrammatic relation between biquandle colorings and quandle colorings, and showed that various invariants including coloring numbers are equivalent. (2) We gave a lower bound for the bridge indices of surface knots by using kei coloring numbers, and determined the explicit values for some specific examples. (3) We introduced the shifting chain map on quandle homology theory and explored a relation between quandle cocycle invariants and shadow cocycle invariants. We also observed the induced homomorphism. (4) We studied the knot quandles of knotted spheres, called twist-spun knots, and gave a example of knotted spheres with the same knot group but different knot quandles.

Academic Significance and Societal Importance of the Research Achievements

古典的結び目は「ひもの結ばり方」を数学的に捉えた研究対象であり、曲面結び目は古典的結び目が「時間発展したもの」とみなすことができる。この曲面結び目という研究対象をカンドルと呼ばれる代数系を用いて調べることは重要である。今回得られた結果(1)と(3)は、カンドルの代数的な性質解明に新しい研究手段を与えるものである。また、今回得られた結果(2)と(4)は、曲面結び目の性質解明に新しい研究手段を与えるものである。なお、結果(4)は曲面結び目の結び目カンドルの代数的な性質に着目しており、今後の新たな研究への糸口となり得るものである。

Report

(7 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (15 results)

All 2023 2022 2021 2020 2019 2018 2017

All Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 1 results,  Acknowledgement Compliant: 1 results) Presentation (13 results) (of which Int'l Joint Research: 3 results,  Invited: 3 results)

  • [Journal Article] The bridge number of surface links and kei colorings2022

    • Author(s)
      Kouki Sato, Kokoro Tanaka
    • Journal Title

      Bulletin of the London Mathematical Society

      Volume: - Issue: 5 Pages: 1763-1771

    • DOI

      10.1112/blms.12654

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Homology for quandles with partial group operations2017

    • Author(s)
      Scott Carter, Atsushi Ishii, Masahico Saito, Kokoro Tanaka
    • Journal Title

      Pacific J. Math.

      Volume: 287-1 Issue: 1 Pages: 19-48

    • DOI

      10.2140/pjm.2017.287.19

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] 二次元結び目の結び目カンドルと結び目群について2023

    • Author(s)
      田中 心
    • Organizer
      日本数学会2023年度年会「トポロジー分科会」
    • Related Report
      2022 Annual Research Report
  • [Presentation] 結び目群は同じだが結び目カンドルは異なる球面結び目2022

    • Author(s)
      田中 心
    • Organizer
      4次元トポロジー
    • Related Report
      2022 Annual Research Report
  • [Presentation] 結び目彩色多項式と1-タングルのカンドル彩色不変量について2021

    • Author(s)
      田中 心
    • Organizer
      N-KOOKセミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Knot coloring polynomial and the invariant using quandle colorings of 1-tangles2021

    • Author(s)
      田中 心
    • Organizer
      The 16th East Asian Conference on Geometric Topology
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Independence of Roseman moves for surface knots2020

    • Author(s)
      田中心
    • Organizer
      The 15th East Asian Conference on Geometric Topology
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Shifting chain maps in quandle homology and cocycle invariants2019

    • Author(s)
      田中心
    • Organizer
      拡大KOOKセミナー2019
    • Related Report
      2019 Research-status Report
  • [Presentation] 曲面絡み目の橋指数と圭彩色2019

    • Author(s)
      田中心
    • Organizer
      4次元トポロジー
    • Related Report
      2019 Research-status Report
  • [Presentation] Quandle cocycle invariants and shadow cocycle invariants2019

    • Author(s)
      田中心
    • Organizer
      Spring Central and Western Joint Sectional Meeting, Special Session on Algebraic and Combinatorial Structures in Knot Theory
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Quandle 2-cocycle invariants and shadow 3-cocycle invariants2018

    • Author(s)
      田中心
    • Organizer
      2018年度琉球結び目セミナー
    • Related Report
      2018 Research-status Report
  • [Presentation] 曲面結び目のbridge trisection (1):tri-plane 図式の紹介2018

    • Author(s)
      田中心
    • Organizer
      2017年度琉球結び目セミナー
    • Related Report
      2017 Research-status Report
  • [Presentation] Homology theory for multiple conjugation quandles2017

    • Author(s)
      田中心
    • Organizer
      Tsuda University Topology Workshop
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] バイカンドル彩色数とカンドル彩色数の関係について2017

    • Author(s)
      田中心
    • Organizer
      東北結び目セミナー
    • Related Report
      2017 Research-status Report
  • [Presentation] A relation between biquandle colorings and quandle colorings2017

    • Author(s)
      田中心
    • Organizer
      研究集会「4次元トポロジー」
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi