• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Applications of Alexander polynomial

Research Project

Project/Area Number 17K05246
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionKanazawa University

Principal Investigator

Kadokami Teruhisa  金沢大学, 機械工学系, 教授 (80382026)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords結び目 / アレクサンダー多項式 / Reidemeister torsion / デーン手術 / もろ手性 / 結び目と数論 / 結び目理論 / 低次元トポロジー / Alexander polynomial / Dehn surgery / Seifert fibered space / トポロジー / 幾何学
Outline of Final Research Achievements

The Alexander polynomial is the most classical polynomial invariant for knots, which is always important in Knot Theory and Low dimensional Topology.From the fact that the Alexander polynomial is deeply related with the Reidemeister torsion, which is an invariant for 3-dimensional manifolds, via surgery formula, I have studied the value of the Reidemeister torsion of lens spaces and Seifert manifolds by using the facts from cyclotomic field theory.

Academic Significance and Societal Importance of the Research Achievements

アレクサンダー多項式は学術的に様々な方面に応用できる。私が研究で行った主な応用は、手術理論、絡み目の対称性問題、結び目理論と数論の関連性の理論である。特に数論との関連性からわかるように、今後も他分野との関わりを広げられる可能性を秘めていると確信する。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (5 results)

All 2019 2018

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (4 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Seifert surgery on knots via Reidemeister torsion and Casson-Walker invariant III2018

    • Author(s)
      Teruhisa Kadokami, Noriko Maruyama, Tsuyoshi Sakai
    • Journal Title

      Topology and its Applications

      Volume: 241 Pages: 78-81

    • DOI

      10.1016/j.topol.2018.03.034

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Geometric study of virtual knot theory2019

    • Author(s)
      門上晃久
    • Organizer
      拡大KOOKセミナー2019
    • Related Report
      2019 Annual Research Report
  • [Presentation] Knot theory in 3-manifold via virtual knot theory2019

    • Author(s)
      Teruhisa Kadokami
    • Organizer
      Knots in Tsushima 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Reidemeister torsion の利用法1,22019

    • Author(s)
      門上晃久
    • Organizer
      低次元トポロジー勉強会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Knot theory in 3-manifold via virtual knot theory2019

    • Author(s)
      門上晃久
    • Organizer
      結び目の数理II
    • Related Report
      2019 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi