• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Diagramtic approach for finite type invariants of welded links

Research Project

Project/Area Number 17K05264
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionWaseda University (2018-2021)
Tsuda University (2017)

Principal Investigator

Yasuhara Akira  早稲田大学, 商学学術院, 教授 (60256625)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordsウエルデッド絡み目 / ミルナー不変量 / 有限型不変量 / ストリング絡み目 / コンコーダント / クラスパー理論 / クラスパー / ウェルデッド絡み目 / 幾何学
Outline of Final Research Achievements

For each positive integer k, we introduce a new notion, Wk-move on welded links, which induces an equivalence relation, Wk-equivalence, on welded links. One of the most important properties of the Wk-equivalence is that it preserves the finite type invariants of welded links of order at most k. We build a theory of Wk-move, may call Wk-clasper theory. And by using this theory, we gave several results as follows: (1) For any positive integer n, the set of Wk-equivalence classes of welded n-string links forms a group structure. (2) For any positive integer k, the set of Wk-equivalence classes of welded 1-string links is classified by their Alexander polynomial of degree at most k. (3) Milnor invariants, which are one of the most important finite type invariants for welded links, can be characterized geometrically in terms of Wk-equivalence.

Academic Significance and Societal Importance of the Research Achievements

本研究では,古典的絡み目に対するクラスパー理論のウェルデッド版である,Wkクラスパー理論を構築することにより,ウェルデッド絡み目の研究を大きく進展させた.
古典的絡み目の同値類は,ウェルデッド絡み目の同値類に「埋め込まれる」事が知られている.このことから,通常の絡み目の枠組みでは解決できなかった問題が,ウェルデッド絡み目を研究する事により解決できるという事が期待できる.したがって,古典的クラスパー理論では,解決する事の出来なかった問題が,我々の構築したWkクラスパー理論を用いて解決できるという期待も大きく,本研究分野に与えた影響は計り知れない.

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (16 results)

All 2022 2020 2019 2018 2017 Other

All Int'l Joint Research (2 results) Journal Article (7 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 7 results,  Open Access: 1 results) Presentation (7 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results)

  • [Int'l Joint Research] University of Grenoble Alpes/Aix-Marseille University(フランス)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] University of Grenoble Alpes/Aix-Marseille University(フランス)

    • Related Report
      2020 Research-status Report
  • [Journal Article] Generalized virtualization on welded links2020

    • Author(s)
      Haruko A. Miyazawa, Kodai Wada, Akira Yasuhara
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 印刷中 Issue: 3 Pages: 923-944

    • DOI

      10.2969/jmsj/82248224

    • NAID

      130007879407

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Burnside groups and n-moves for links2019

    • Author(s)
      Haruko A. Miyazawa, Kodai Wada, Akira Yasuhara
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 印刷中 Issue: 8 Pages: 3595-3602

    • DOI

      10.1090/proc/14470

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Arrow calculus for welded and classical links2019

    • Author(s)
      Jean-Baptiste Meilhan and Akira Yasuhara
    • Journal Title

      Algebraic & Geometric Topology

      Volume: 19 Issue: 1 Pages: 397-456

    • DOI

      10.2140/agt.2019.19.397

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The pass move is an unknotting operation for welded knots2018

    • Author(s)
      Takuji Nakamura, Yasutaka Nakanishi, Shin Satoh b, Akira Yasuhara
    • Journal Title

      Topology and its Applications

      Volume: 247 Pages: 9-19

    • DOI

      10.1016/j.topol.2018.07.005

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Link invariants derived from multiplexing of crossings2018

    • Author(s)
      Haruko Aida Miyazawa, Kodai Wada, Akira Yasuhara
    • Journal Title

      Algebraic & Geometric Toplogy

      Volume: 18 Issue: 4 Pages: 2497-2507

    • DOI

      10.2140/agt.2018.18.2497

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Linking invariants of even virtual links2017

    • Author(s)
      Haruko Aida Miyazawa, Kodai Wada and Akira Yasuhara
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 26 Issue: 12 Pages: 1750072-1750083

    • DOI

      10.1142/s0218216517500729

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Milnor invariants of covering links2017

    • Author(s)
      Natsuka Kobayashi, Kodai Wada and Akira Yasuhara
    • Journal Title

      Topology and Its Applications

      Volume: 224 Pages: 60-72

    • DOI

      10.1016/j.topol.2017.04.002

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Higher dimensional welded objects and their Milnor invariants2022

    • Author(s)
      安原 晃
    • Organizer
      研究集会「拡大KOOKセミナー2021」
    • Related Report
      2021 Annual Research Report
  • [Presentation] 境界付き曲面絡み目のミルナー不変量と基本群彩色2020

    • Author(s)
      安原晃
    • Organizer
      2019年度琉球結び目セミナー, 那覇市ぶんかテンブス館
    • Related Report
      2019 Research-status Report
  • [Presentation] Burnside groups and n-moves for links2019

    • Author(s)
      Akira Yasuhara
    • Organizer
      Knots in Washington XLVII
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 絡み目のMilnor不変量と2n-move2018

    • Author(s)
      安原晃
    • Organizer
      研究集会「2018年度琉球結び目セミナー」
    • Related Report
      2018 Research-status Report
  • [Presentation] Burnside groups and n-moves for links2018

    • Author(s)
      Akira Yasuhara
    • Organizer
      Topology Seminar, Institut Fourier
    • Related Report
      2018 Research-status Report
  • [Presentation] ウェルデッド絡み目のArrow diagramについて2018

    • Author(s)
      安原晃
    • Organizer
      東京女子大学トポロジーセミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Arrow calculus for welded links2017

    • Author(s)
      Akira Yasuhara
    • Organizer
      Topology and Geometry of Low-dimensional Manifolds
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2017-04-28   Modified: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi