• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Characterizations of function spaces that preserve some results on martingales

Research Project

Project/Area Number 17K05291
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionUniversity of Toyama

Principal Investigator

Kikuchi Masato  富山大学, 学術研究部理学系, 教授 (20204836)

Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywordsマルチンゲール / マルチンゲール変換 / Banach関数空間 / 弱空間 / 良可測射影 / 可予測射影 / ノルム不等式 / 再配列不変空間 / マルチンゲール不等式 / 準Banach関数空間 / Burkholderの弱型不等式 / Doobの弱型不等式 / Marcinkiewicz空間
Outline of Final Research Achievements

I have studied some extensions of various martingale inequalities which hold in well-known function spaces such as Lebesgue spaces L^p.
It is well known that weak-type inequalities for martingale transforms by uniformly bounded predictable processes hold in L^p. It is also known that norm inequalities for the optional projection and the predictable projection of a general process hold in L^p. Necessary and sufficient conditions for these inequalities to remains valid when L^p is replaced by the weak spaces w-X of Banach function spaces X.

Academic Significance and Societal Importance of the Research Achievements

マルチンゲール変換は、マルチンゲール理論を展開する上で欠くことのできない重要な概念であり、マルチンゲール変換に関する不等式に関する研究成果は、新たな研究の糸口となることが期待できる。
一般の(離散時)確率過程の良可測射影・可予測射影に関する不等式の研究成果は、数理ファイナンス分野への応用のために F. Delbaen, W. Schachermayerらによって得られた結果を大幅に拡張したものであり、新たな理論展開だけでなく、数理ファイナンスへの応用も期待できる。

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (6 results)

All 2023 2022 2019 2018 2017

All Journal Article (2 results) (of which Open Access: 1 results,  Peer Reviewed: 1 results) Presentation (4 results)

  • [Journal Article] 弱型Burkholder不等式の成り立つ関数空間2023

    • Author(s)
      菊池万里
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: No.2250 Pages: 22-30

    • Related Report
      2023 Annual Research Report
    • Open Access
  • [Journal Article] On some inequalities for the optional projection and the predictable projection of a discrete parameter process2022

    • Author(s)
      Masato Kikuchi
    • Journal Title

      Annales Mathematiques Blaise Pascal

      Volume: 29

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] 弱型 Burkholder 不等式の成り立つ関数空間2019

    • Author(s)
      菊池万里
    • Organizer
      RIMS 共同研究 (公開型) 関数空間論とその周辺
    • Related Report
      2019 Research-status Report
  • [Presentation] 弱空間における Burkholder-Davis-Gundy 型不等式2018

    • Author(s)
      菊池万里
    • Organizer
      富山解析セミナー2018
    • Related Report
      2018 Research-status Report
  • [Presentation] 離散時間確率過程の可予測射影に関する不等式について2017

    • Author(s)
      菊池万里
    • Organizer
      富山解析セミナー2017
    • Related Report
      2017 Research-status Report
  • [Presentation] 可予測射影及び良可測射影に関する不等式について2017

    • Author(s)
      菊池万里
    • Organizer
      RIMS共同研究(公開型)「関数空間の深化とその周辺」
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi