• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Computer algebra based methods for hypergeometric functions in some variables and its applications

Research Project

Project/Area Number 17K05292
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionKanazawa University

Principal Investigator

Ohara Katsuyoshi  金沢大学, 数物科学系, 教授 (00313635)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords複素解析 / 超幾何関数 / 数式処理
Outline of Final Research Achievements

We obtained new results for F9 a hypergeometric function in two variables of rank 9 using computer algebra based methods. We also derived some formulae for the generalized Marcum Q-function. In addition, we gave an algorithm for computing Grothendieck local residues in the general case. These algorithms are implemented in a computer algebra system Risa/Asir.

Academic Significance and Societal Importance of the Research Achievements

本研究の目的は、多変数超幾何関数について、パッフィアン方程式や関数等式などのさまざまな公式(関係式)を数式処理の技法を援用しながら導出することである。これらの公式は純粋数学としての興味だけでなく、応用数学の面からも興味深く実用性のあるものである。例えば、パッフィアン方程式は、多変数超幾何関数やより一般にホロノミック関数の数値評価を行うのに極めて有効である。計算数理統計など関連する諸分野が急速に発展する中で、計算効率のよい公式を探索することの重要性は増している。そのため、それらの公式を組織的に導出していくことは学術的にも重要であり、また社会的にも意義がある。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (9 results)

All 2020 2019 2017 Other

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (4 results) (of which Int'l Joint Research: 1 results) Remarks (2 results)

  • [Journal Article] An Algorithm for Computing Grothendieck Local Residues II: General Case2020

    • Author(s)
      K. Ohara, S. Tajima
    • Journal Title

      Mathematics in Computer Science

      Volume: 14 Issue: 2 Pages: 483-496

    • DOI

      10.1007/s11786-019-00439-y

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] The structure of a local system associated with a hypergeometric system of rank 92020

    • Author(s)
      J. Kaneko, K. Matsumoto, K. Ohara
    • Journal Title

      International Journal of Mathematics

      Volume: 31 Issue: 03 Pages: 2050021-2050021

    • DOI

      10.1142/s0129167x20500214

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] An algorithm for computing Grothendieck local residues I --- shape base case ---2019

    • Author(s)
      K. Ohara, S. Tajima
    • Journal Title

      Mathematics in Computer Science

      Volume: 印刷中

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Grothedieck local residues の計算アルゴリズムとその実装2019

    • Author(s)
      小原功任
    • Organizer
      2019年度多変数関数論冬セミナー
    • Related Report
      2019 Annual Research Report
  • [Presentation] 多変数留数の計算アルゴリズムIII2019

    • Author(s)
      小原功任
    • Organizer
      RIMS共同研究(公開型)
    • Related Report
      2019 Annual Research Report
  • [Presentation] 非心複素 Wishart 行列の最大固有値の分布関数の超幾何微分方程式による計算2017

    • Author(s)
      小原功任, 高山信毅, Fadil Danufane
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2017 Research-status Report
  • [Presentation] An algorithm for computing Grothendieck local residues I --- shape base case ---2017

    • Author(s)
      Katsuyoshi Ohara, Shinichi Tajima
    • Organizer
      ACA 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Remarks] the web page of Katsuyoshi Ohara

    • URL

      http://air.s.kanazawa-u.ac.jp/~ohara/

    • Related Report
      2019 Annual Research Report
  • [Remarks] the web page of Katsuyoshi Ohara

    • URL

      http://air.s.kanazawa-u.ac.jp/~ohara/index-j.html

    • Related Report
      2018 Research-status Report 2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi