• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on intermediate pseudoconvexity in complex spaces

Research Project

Project/Area Number 17K05301
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionHiroshima University

Principal Investigator

ABE Makoto  広島大学, 先進理工系科学研究科(理), 教授 (90159442)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords中間的擬凸性 / 正規複素空間 / K正則包 / nルンゲ性 / 単葉型開リーマン面 / 正則近似 / シュタイン多様体 / K 完備複素空間 / K 包 / 正則近似定理 / 有理型近似定理 / 複素解析 / 複素幾何
Outline of Final Research Achievements

Regarding pseudoconvexity and intermediate pseudoconvexity for complex manifolds or for complex spaces, there are still many problems that need to be solved. In this study, we obtained a characterization for unramified domains over the space of n-tuples of complex numbers using quadratic functions to satisfy the intermediate pseudoconvexity. In addition, we obtained some new results on the n-Rungeness for open sets in n-dimensional complex manifolds, on planar open Riemann surfaces, and on the K-envelopes of holomorphy of K-complete normal complex spaces.

Academic Significance and Societal Importance of the Research Achievements

この研究において得られたいくつかの成果,例えば,n個の複素数の組全体のなす空間の上の不分岐領域が中間的擬凸性をみたすための新しい特徴付けについては,それがもっと一般的な状況における擬凸性・中間的擬凸性の考察のための応用の可能性をもつことなど,多変数関数論・複素解析幾何の今後の一定の発展のために寄与するためのいくつか緒であることが期待される.

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (18 results)

All 2021 2020 2019 2018 2017

All Journal Article (9 results) (of which Peer Reviewed: 5 results,  Open Access: 5 results) Presentation (9 results) (of which Int'l Joint Research: 1 results,  Invited: 3 results)

  • [Journal Article] 大域的に定義された解析的集合に関する Kuhnel の定理の一般化2021

    • Author(s)
      阿部 誠・島 唯史・杉山 俊
    • Journal Title

      函数論分科会講演アブストラクト,日本数学会 2021 年度年会,慶應義塾大学,2021 年 3 月 15~18 日

      Volume: - Pages: 63-64

    • Related Report
      2020 Annual Research Report
  • [Journal Article] A generalization of a theorem of Kuhnel on globally defined analytic sets2020

    • Author(s)
      Makoto Abe, Tadashi Shima, and Shun Sugiyama
    • Journal Title

      Complex Variables and Elliptic Equations

      Volume: - Issue: 11 Pages: 1937-1940

    • DOI

      10.1080/17476933.2020.1793968

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] C^n 上の不分岐 Riemann 領域 に対する中間的擬凸性2020

    • Author(s)
      阿部 誠・島 唯史・杉山 俊
    • Journal Title

      函数論分科会講演アブストラクト,日本数学会 2020 年度秋季総合分科会,熊本大学,2020 年 9 月 22~25 日

      Volume: - Pages: 27-28

    • Related Report
      2020 Annual Research Report
  • [Journal Article] Intermediate pseudoconvexity for unramified Riemann domains over C^n2020

    • Author(s)
      Makoto Abe, Tadashi Shima, and Shun Sugiyama
    • Journal Title

      Toyama Mathematical Journal

      Volume: 40

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A Characterization of Subpluriharmonicity for a Function of Several Complex Variables2019

    • Author(s)
      Makoto Abe and Shun Sugiyama
    • Journal Title

      広島大学大学院総合科学研究科紀要. II, 環境科学研究

      Volume: 14 Pages: 1-5

    • DOI

      10.15027/48890

    • NAID

      120006818839

    • ISSN
      1881-7696
    • URL

      https://hiroshima.repo.nii.ac.jp/records/2032902

    • Year and Date
      2019-12-31
    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A topological characterization of the strong disk property on open Riemann surfaces2019

    • Author(s)
      Makoto Abe, Gou Nakamura, and Hiroshige Shiga
    • Journal Title

      Kodai Mathematical Journal

      Volume: 42 Issue: 3 Pages: 587-592

    • DOI

      10.2996/kmj/1572487233

    • NAID

      130007742201

    • ISSN
      0386-5991, 1881-5472
    • Year and Date
      2019-10-31
    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 正則近似・有理型近似・強い円板的性質2019

    • Author(s)
      阿部 誠
    • Journal Title

      第 62 回函数論シンポジウム講演アブストラクト,大同大学,名古屋市,2019 年 11 月 2~4 日

      Pages: 24-34

    • Related Report
      2019 Research-status Report
  • [Journal Article] Planar open Riemann surfaces and holomorphic approximation2019

    • Author(s)
      Makoto Abe and Gou Nakamura
    • Journal Title

      愛知工業大学研究報告

      Volume: 54 Pages: 14-19

    • NAID

      120006607318

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A characterization of q-pseudoconvexity for unramified domains over C^n2017

    • Author(s)
      Makoto Abe
    • Journal Title

      Program and Abstracts, The 25th International Conference on Finite or Infinite Dimensional Complex Analysis and Applications, Univ. of Hong-Kong, Hong-Kong, China, June 26-30, 2017

      Volume: なし Pages: 9-9

    • Related Report
      2017 Research-status Report
  • [Presentation] 大域的に定義された解析的集合に関する Kuhnel の定理の一般化2021

    • Author(s)
      阿部 誠・島 唯史・杉山 俊
    • Organizer
      日本数学会 2021 年度年会
    • Related Report
      2020 Annual Research Report
  • [Presentation] C^n 上の不分岐 Riemann 領域に対する中間的擬凸性2020

    • Author(s)
      阿部 誠・島 唯史・杉山 俊
    • Organizer
      日本数学会 2020 年度秋季総合分科会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 正則近似・有理型近似・強い円板的性質2019

    • Author(s)
      阿部 誠
    • Organizer
      第 62 回函数論シンポジウム
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] A characterization of subpluriharmonicity for a function of several complex variables2019

    • Author(s)
      阿部 誠
    • Organizer
      平成30年度複素解析ワークショップ,広島工業大学,広島市,2019年3月23~24日
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 単葉型開 Riemann 面と正則近似性質2018

    • Author(s)
      阿部 誠
    • Organizer
      ポテンシャル論セミナー,名城大学,名古屋市,2018年5月18日
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] C^n 上の不分岐 Riemann 領域に対する中間的擬凸性について2018

    • Author(s)
      杉山俊・阿部誠・島唯史
    • Organizer
      平成29年度日本数学会中国・四国支部例会,山口大学,山口市,2018年1月21日
    • Related Report
      2017 Research-status Report
  • [Presentation] 単葉型開 Riemann 面の強い円板的性質を用いた特徴付け2018

    • Author(s)
      阿部誠
    • Organizer
      平成29年度複素解析ワークショップ,広島工業大学,広島市,2018年3月25日
    • Related Report
      2017 Research-status Report
  • [Presentation] A characterization of q-pseudoconvexity for unramified domains over C^n2017

    • Author(s)
      Makoto Abe
    • Organizer
      The 25th International Conference on Finite or Infinite Dimensional Complex Analysis and Applications, Univ. of Hong-Kong, Hong-Kong, China, June 26-30, 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] A characterizaton of a planar open Riemann surface by a holomorphic approximation property2017

    • Author(s)
      阿部誠
    • Organizer
      広島ポテンシャル論セミナー,広島大学,東広島市,2017年12月1日
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi