• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Dynamic stochastic dependency analysis by new prediction theoretic method and its applications to finance

Research Project

Project/Area Number 17K05302
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionHiroshima University

Principal Investigator

Inoue Akihiko  広島大学, 先進理工系科学研究科(理), 教授 (50168431)

Co-Investigator(Kenkyū-buntansha) 笠原 雪夫  北海道大学, 理学研究院, 研究院研究員 (10399793)
Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords自己回帰移動平均過程 / 有限予測係数 / 閉形式表示 / 線形時間アルゴリズム / 多変量ARMA過程 / テプリッツ系 / ブートストラップ / 多次元ARMA過程 / 確率論 / 数理ファイナンス / 予測理論
Outline of Final Research Achievements

The autoregressive-moving average (ARMA) process is an important stationary time series model for applications. In this study, we obtained a closed-form representation of the finite predictor coefficients of general multivariate ARMA processes using a new prediction theoretic method developed by the principal investigator and others. This closed-form representation is given in terms of the poles of the two matrix-valued outer functions that appear in the decompositions of the spectral density. The remarkable point of this closed-form representation is that it provides a superfast algorithm that calculates the finite predictor coefficient in linear time O(n). This is an ideal superfast algorithm, as no algorithm is faster than O(n).

Academic Significance and Societal Importance of the Research Achievements

自己回帰移動平均過程は、ほとんどの時系列の教科書で扱われる基本的な定常時系列のモデルである。一方、定常時系列モデルを応用に利用する場合に最も基本的な量は、その有限予測係数である。有限予測係数は、Yule-Walker方程式というToeplitz方程式の解となっている。一般にToeplitz方程式をO(nの2乗)より高速で解くアルゴリズムは、超高速 (superfast) とよばれる。本研究で得られた一般の多変量ARMA過程の有限予測係数に対する閉形式表示は、その有限予測係数を可能なもので最も高速な線形時間 O(n) で計算する超高速なアルゴリズムを与えるもので、応用上重要な結果といえる。

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (13 results)

All 2020 2019 2018 2017 Other

All Int'l Joint Research (1 results) Journal Article (5 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results) Presentation (5 results) (of which Invited: 5 results) Remarks (2 results)

  • [Int'l Joint Research] Imperial College(英国)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Closed-form expression for finite predictor coefficients of multivariate ARMA processes2020

    • Author(s)
      Akihiko Inoue
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 176 Pages: 104578-104578

    • DOI

      10.1016/j.jmva.2019.104578

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] 有限予測における表現定理とその応用2019

    • Author(s)
      井上 昭彦
    • Journal Title

      数学

      Volume: 71 Pages: 302-324

    • NAID

      130008067656

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Simple matrix representations of the orthogonal polynomials for a rational spectral density on the unit circle2018

    • Author(s)
      Inoue Akihiko、Kasahara Yukio
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 464 Issue: 2 Pages: 1366-1374

    • DOI

      10.1016/j.jmaa.2018.04.062

    • NAID

      120006878348

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Matricial Baxter's theorem with a Nehari sequence2018

    • Author(s)
      Kasahara Yukio、Bingham Nicholas H.
    • Journal Title

      Mathematische Nachrichten

      Volume: 291 Issue: 17-18 Pages: 2590-2598

    • DOI

      10.1002/mana.201700147

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Baxter’s inequality for finite predictor coefficients of multivariate long-memory stationary processes2018

    • Author(s)
      Inoue Akihiko、Kasahara Yukio、Pourahmadi Mohsen
    • Journal Title

      Bernoulli

      Volume: 24 Issue: 2 Pages: 1202-1232

    • DOI

      10.3150/16-bej897

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] テプリッツ系に対する Baxter 型収束定理2020

    • Author(s)
      井上 昭彦
    • Organizer
      2020年度確率論シンポジウム
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] テプリッツ行列の逆に対する表現定理とその応用2019

    • Author(s)
      井上 昭彦
    • Organizer
      2019年度確率論シンポジウム
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 多変量ARMA 過程の有限予測係数に対する閉形式表示2018

    • Author(s)
      井上 昭彦
    • Organizer
      確率論シンポジウム
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 定常過程に対するMA ブートストラップ2018

    • Author(s)
      藤本 智博、井上 昭彦、清水 亮
    • Organizer
      確率論シンポジウム
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 新生過程の明示公式とファイナンスへの応用2017

    • Author(s)
      井上 昭彦
    • Organizer
      ファイナンスの数理解析とその応用
    • Related Report
      2017 Research-status Report
    • Invited
  • [Remarks] 井上昭彦のホームページ

    • URL

      https://home.hiroshima-u.ac.jp/inoue100/

    • Related Report
      2020 Annual Research Report 2019 Research-status Report 2018 Research-status Report
  • [Remarks] Akihiko Inoue's Homepage

    • URL

      https://home.hiroshima-u.ac.jp/inoue100/index-e.html

    • Related Report
      2020 Annual Research Report 2019 Research-status Report 2018 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi