• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Well-posedness of the Cauchy problem for nonlinear dispersive equations and its algebraic structure

Research Project

Project/Area Number 17K05316
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionChuo University (2018-2023)
Nagoya University (2017)

Principal Investigator

Tsugawa Kotaro  中央大学, 理工学部, 教授 (70402451)

Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords分散型方程式 / 非線形 / 初期値問題 / 適切性 / KdV方程式 / シュレディンガー方程式 / 調和解析 / 可積分系 / 偏微分方程式 / 非線形分散型
Outline of Final Research Achievements

1, We consider the fifth order KdV type equations and prove the unconditional well-poseedness in the Sobolev space when its index is greater than or equal to 1. It is optimal in the sense that the nonlinear terms can not be defined in the space-time distribution framework when the index is less than 1. The main idea is to employ the normal form reduction and a kind of cancellation properties to deal with the derivative losses.
2, We consider the Cauchy problem of a class of higher order Schrodinger type equations with constant coefficients. By employing the energy inequality, we show the L2 well-posedness, the parabolic smoothing and a breakdown of the persistence of regularity. We classify this class of equations into three types on the basis of their smoothing property.

Academic Significance and Societal Importance of the Research Achievements

非線形分散型方程式の研究はここ30年ほど大きく進展しているが,これまで主に扱われてきたのは非線形の特異性がそれほど強くない場合であり,非線形項に高階の微分を含むような方程式に対する結果は限られていた.本研究はこのようなこれまで扱いにくかった方程式に対する研究手法を切り開いたという意味で学術的意義が高いといえる.

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (19 results)

All 2024 2023 2022 2020 2019 2018 2017

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (15 results) (of which Int'l Joint Research: 4 results,  Invited: 5 results)

  • [Journal Article] Cancellation properties and unconditional well-posedness for the fifth order KdV type equations with periodic boundary condition2024

    • Author(s)
      T. K. Kato and K. Tsugawa
    • Journal Title

      Partial Differential Equations and Applications

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Well-posedness and parabolic smoothing effect for higher order Schrodinger type equations with constant coefficients2022

    • Author(s)
      T. Tanaka and K. Tsugawa
    • Journal Title

      Osaka J. Math

      Volume: 59 Pages: 465-480

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Well-posedness and parabolic smoothing effect for higher order Schrodinger type equations with constant coefficients2022

    • Author(s)
      T. Tanaka, K. Tsugawa
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 59 Pages: 465-480

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Scattering and well-posedness for the Zakharov system at a critical space in four and more spatial dimensions2017

    • Author(s)
      I. Kato and K. Tsugawa
    • Journal Title

      Differential and Integral equations

      Volume: 30 Pages: 763-794

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Local well-posedness of derivative Schrodinger equations on the torus2023

    • Author(s)
      Kotaro TSUGAWA
    • Organizer
      French-Japanese one meeting in Tours
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Well-posedness and parabolic smoothing effect for higher order Schrodinger type equations with constant coefficients2022

    • Author(s)
      K. Tsugawa
    • Organizer
      Mathematical Analysis of Nonlinear Dispersive and Wave Equations
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Well-posedness and parabolic smoothing effect for higher order Schrodinger type equations with constant coefficients2020

    • Author(s)
      Kotaro TSUGAWA
    • Organizer
      第169回神楽坂解析セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Well-posedness and parabolic smoothing effect for higher order linear Schrodinger type equations on the torus2020

    • Author(s)
      Kotaro TSUGAWA
    • Organizer
      第37回九州における偏微分方程式研究集会
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Local well-posedness and parabolic smoothing effect for higher order linear Schrodinger type equations on the torus2019

    • Author(s)
      Kotaro TSUGAWA
    • Organizer
      Okayama Workshop on PDEs
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Ill-posedness of derivative nonlinear Schrodinger equations on the torus2018

    • Author(s)
      津川光太郎
    • Organizer
      東北大学応用数学セミナー
    • Related Report
      2018 Research-status Report
  • [Presentation] Ill-posedness of derivative nonlinear Schrodinger equations on the torus2018

    • Author(s)
      津川光太郎
    • Organizer
      応用解析研究会
    • Related Report
      2018 Research-status Report
  • [Presentation] Ill-posedness of derivative nonlinear Schrodinger equations on the torus2018

    • Author(s)
      津川光太郎
    • Organizer
      調和解析中大セミナー
    • Related Report
      2018 Research-status Report
  • [Presentation] Ill-posedness of derivative nonlinear Schrodinger equations on the torus2018

    • Author(s)
      津川光太郎
    • Organizer
      中大偏微分方程式セミナー
    • Related Report
      2018 Research-status Report
  • [Presentation] Ill-posedness of derivative nonlinear Schrodinger equations on the torus2018

    • Author(s)
      Kotaro Tsugawa
    • Organizer
      名古屋微分方程式研究集会
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Ill-posedness of derivative nonlinear Schrodinger equations on the torus2018

    • Author(s)
      Kotaro Tsugawa
    • Organizer
      津田塾大学PDE研究会
    • Related Report
      2017 Research-status Report
  • [Presentation] Ill-posedness of derivative nonlinear Schrodinger equations on the torus2018

    • Author(s)
      Kotaro Tsugawa
    • Organizer
      第2回 PDE Workshop in Miyazaki
    • Related Report
      2017 Research-status Report
  • [Presentation] Ill-posedness of derivative nonlinear Schrodinger equations on the torus2017

    • Author(s)
      Kotaro Tsugawa
    • Organizer
      第7回弘前非線形方程式研究会
    • Related Report
      2017 Research-status Report
  • [Presentation] Ill-posedness of derivative nonlinear Schrodinger equations on the torus2017

    • Author(s)
      Kotaro Tsugawa
    • Organizer
      京都大学NLPDEセミナー
    • Related Report
      2017 Research-status Report
  • [Presentation] Ill-posedness of derivative nonlinear Schrodinger equations on the torus2017

    • Author(s)
      Kotaro Tsugawa
    • Organizer
      名古屋微分方程式セミナー
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi