• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Generalization of flat structure and isomonodromic deformation

Research Project

Project/Area Number 17K05335
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionUniversity of the Ryukyus

Principal Investigator

Mano Toshiyuki  琉球大学, 理学部, 教授 (60378594)

Project Period (FY) 2017-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords線形微分方程式 / 平坦構造 / モノドロミー / 微分方程式 / モノドロミ / モノドロミ保存変形 / 複素鏡映群 / パンルヴェ方程式
Outline of Final Research Achievements

We studied a kind of geometric structure called 'flat structure' based on its relationship with differential equations. We obtained the following results:
(1) We gave a correspondence between solutions to the Painleve equations (which are nonlinear differential equations) and potential vector fields of flat structures in terms of algebraic and analytic descriptions. (2) We gave a proof of freeness of hyperplane multi-arrangements defined by reflections of a complex reflection group. This proof is an application of our construction of a flat structure associated with a complex reflection group. (3) We published a book which mainly explained our research findings. Particularly, this book contains a new framework on the theory of flat structures.

Academic Significance and Societal Importance of the Research Achievements

本研究の最大の特色は、「平坦構造」と「線形微分方程式」という一見異なる分野の対象について、本質的に同じ対象であるという観点から研究を行うことにある。その結果として、パンルヴェ方程式と呼ばれる線形微分方程式の解と平坦構造のポテンシャルベクトル場と呼ばれる対象とのいくつかの面で新しい対応が明らかになった。また、複素鏡映群に対する平坦構造の構成は「超平面配置」という分野の未解決問題の解決に応用された。
さらに、本研究の成果をまとめたものを主な内容とする専門書を出版した。この本では、平坦構造について従来とは異なる新しい理論構成が与えられている。今後この新しい理論構成を基礎とした研究の進展も期待される。

Report

(7 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (23 results)

All 2023 2022 2020 2019 2018 2017 Other

All Int'l Joint Research (3 results) Journal Article (7 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 7 results,  Open Access: 3 results) Presentation (12 results) (of which Int'l Joint Research: 7 results,  Invited: 8 results) Book (1 results)

  • [Int'l Joint Research] ルール大学ボーフム/ハノーファー大学(ドイツ)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] ルール大学ボーフム/ハノーファー大学(ドイツ)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] ルール大学ボーフム/ベルリン自由大学/ハノーファー大学(ドイツ)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Flat Structure on the Space of Isomonodromic Deformations2020

    • Author(s)
      Kato Mitsuo, Mano Toshiyuki, Sekiguchi Jiro
    • Journal Title

      Symmetry, Integrability and Geometry: Methods and Applications

      Volume: 16

    • DOI

      10.3842/sigma.2020.110

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Freeness of multi-reflection arrangements via primitive vector fields2019

    • Author(s)
      Torsten Hoge, Toshiyuki Mano, Gerhard Roehrle, Christian Stump
    • Journal Title

      Advances in Mathematics

      Volume: 350 Pages: 63-96

    • DOI

      10.1016/j.aim.2019.04.044

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Potential vector fields and isomonodromic tau functions in terms of flat coordinates2019

    • Author(s)
      Mano Toshiyuki
    • Journal Title

      "Complex Differential and Difference Equations" in the series De Gruyter Proceedings in Mathematics

      Volume: - Pages: 327-342

    • DOI

      10.1515/9783110611427-012

    • ISBN
      9783110611427
    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Solutions to the extended WDVV equations and the Painleve VI equation2019

    • Author(s)
      M.Kato, T.Mano, J.Sekiguchi
    • Journal Title

      Complex differential and difference equations

      Volume: 1 Pages: 344-364

    • DOI

      10.1515/9783110611427-013

    • ISBN
      9783110611427
    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Regular Flat Structure and Generalized Okubo System2019

    • Author(s)
      Hiroshi Kawakami, Toshiyuki Mano
    • Journal Title

      Communications in Mathematical Physics

      Volume: 印刷中 Issue: 2 Pages: 403-431

    • DOI

      10.1007/s00220-019-03330-w

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Determinant Structure for τ-Function of Holonomic Deformation of Linear Differential Equations2018

    • Author(s)
      Ishikawa Masao、Mano Toshiyuki、Tsuda Teruhisa
    • Journal Title

      Communications in Mathematical Physics

      Volume: 363 Issue: 3 Pages: 1081-1101

    • DOI

      10.1007/s00220-018-3256-z

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Flat structure and potential vector fields related with algebraic solutions to Painleve VI equation2018

    • Author(s)
      M. Kato, T. Mano, J, Sekiguchi
    • Journal Title

      Opscula Mathematica

      Volume: 38 Issue: 2 Pages: 201-252

    • DOI

      10.7494/opmath.2018.38.2.201

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Flat structures on solutions to the sixth Painleve equation2023

    • Author(s)
      Toshiyuki Mano
    • Organizer
      Web-Seminar on Painleve Equations and related topics
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Period of primitive forms, the space of Okubo-Saito potentials and the sixth Painleve equation2022

    • Author(s)
      Toshiyuki Mano
    • Organizer
      Painleve Equations: From Classical to Modern Analysis
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 複素鏡映群の平坦不変式と多重鏡映面配置の自由性2020

    • Author(s)
      眞野智行
    • Organizer
      日本数学会九州支部例会・特別講演
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Flat structure on the orbit space of a complex refrection group2019

    • Author(s)
      Toshiyuki Mano
    • Organizer
      Silver Workshop: Complex Geometry and Non-Commutative Geometry
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Analytic representation of potential vector fields and isomonodromic tau functions2018

    • Author(s)
      Toshiyuki Mano
    • Organizer
      Complex differential and difference equations
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Flat structure on the orbit space of a complex reflection group2018

    • Author(s)
      Toshiyuki Mano
    • Organizer
      Matroids, Reflection Groups, and Free Hyperplane Arrangements
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] パンルヴェ方程式と平坦座標2018

    • Author(s)
      眞野智行
    • Organizer
      超幾何ワークショップ
    • Related Report
      2017 Research-status Report
  • [Presentation] パンルヴェ方程式と平坦座標2018

    • Author(s)
      眞野智行
    • Organizer
      第2回古典解析・徳島研究会 ~パンルヴェ首相百年記念~
    • Related Report
      2017 Research-status Report
  • [Presentation] Potential vector fields associated with solutions to Painleve equations2017

    • Author(s)
      Toshiyuki Mano
    • Organizer
      Conformal field theory, isomonodromy tau-functions and Painleve equations
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 複素鏡映群に関する平坦構造と多重鏡映面配置の自由性2017

    • Author(s)
      眞野智行
    • Organizer
      研究集会「不変式・超平面配置と平坦構造」
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 平坦構造の一般化と大久保型方程式のモノドロミ保存変形2017

    • Author(s)
      眞野智行
    • Organizer
      第69回 Encounter with Mathematics
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Flat structures and Painleve equations2017

    • Author(s)
      Toshiyuki Mano
    • Organizer
      The XXVth International Conference on Integrable Systems and Quantum symmetries
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Book] 平坦構造と複素鏡映群・パンルヴェ方程式2022

    • Author(s)
      眞野 智行
    • Total Pages
      416
    • Publisher
      森北出版
    • ISBN
      9784627083813
    • Related Report
      2022 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi