Development of full-potential Korringa-Kohn-Rostoker Green's function method and its applications
Project/Area Number |
17K05566
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Mathematical physics/Fundamental condensed matter physics
|
Research Institution | The University of Tokyo |
Principal Investigator |
Akai Hisazumi 東京大学, 物性研究所, 特任研究員 (70124873)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 全電子第一原理計算 / フルポテンシャルKKR法 / 密度汎関数法 / グリーン関数法 / コヒーレントポテンシャル近似 / 計算物質科学 / 計算機マテリアルデザイン / 全電子電子状態計算手法 |
Outline of Final Research Achievements |
The full potential KKR method that enables us to perform high-accuracy and high-speed calculations of electronic structures of solids was developed. There already exists a full potential KKR method but it relies on the Voronoi decomposition of space, and hence, sacrifices the important KKR feature of high-speed. Also the method is not suitable to calculate atomic forces. To resolve these problems, several different approaches to realize full-potential KKR without the Voronoi decomposition have been tried out int this study. As a result the method stating from muffin-tin KKR and treating the full-potential part in the interstitial as well as its nearby region as perturbing potential was found to be most efficient. The method also can be applied to direct calculation of the atomic forces.
|
Academic Significance and Societal Importance of the Research Achievements |
固体中電子の第一原理計算の重要性は,基礎科学のみならず,材料開発の観点からも広く認識されるようになってきた.この方法の有効な利用のためには,信頼性の高い計算が,多数の物質群に対して実行されその結果が蓄積されることが必須である.KKR法は高速計算と不規則合金の計算等に対しても適用できるという他にない長所を合わせ持っており有用である.本研究では高速性というKKR法の特徴を活かしたまま,より高精度な計算を可能にするフルポテンシャルKKR法の開発を行った.従来のフルポテンシャルKKR法とは異なった新しいアプローチに基づくものであり,従来法では難しかった高速計算や原子にはたらく力の計算が可能となった.
|
Report
(4 results)
Research Products
(43 results)