Project/Area Number |
17K05570
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Mathematical physics/Fundamental condensed matter physics
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
Habasaki Junko 東京工業大学, 物質理工学院, 助教 (10133331)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
|
Keywords | 分子動力学 / ナノ多孔質 / シリケートガラス / 拡散係数 / 加速ダイナミクス / ナノポーラス / 分子動力学シミュレーション / ナノイオニクス / 自己修復 / 動的不均一性 / 多孔質 / 自己組織化 / ストレス緩和 / イオニクス / ナノ材料 |
Outline of Final Research Achievements |
Experimentally, it is known that ion dynamics are significantly accelerated in a porous system or a composite system containing a porous matrix. However, mechanism of this was not clear. In this study, molecular dynamics simulations were performed to elucidate the mechanism of accelerated dynamics in nanoporous lithium silicate systems. When the holes were introduced under the condition that the volume was constant, the diffusion coefficient of lithium ions increased with the decrease of the density. It was found that the increase of the diffusion coefficient starts from the short-time region, where the structure (cage) of the coordination polyhedron mainly formed by oxygen around Li becomes loose, and the frequency of the ion ejection motion increases. When the density is further reduced, larger voids develop, and the cage hardens in the remaining part, and with this change the diffusion coefficient decreases again.
|
Academic Significance and Societal Importance of the Research Achievements |
多孔質系は、基礎分野、応用分野の両方でその重要性を増してきており、本研究の成果は、その理解に役立つものである。基礎分野では、物理学上の重要な未解決分野であるガラス転移の理解に寄与した。多孔質系はガラス転移を研究する上での新たな重要なプラットホームとして用いることができる。特に空孔を導入することでイオンダイナミクスの変調や、関連するガラス転移の問題において、配位多面体によるケージングの果たす役割の重要性を浮き彫りにした。応用分野でも、空孔の導入は、ダイナミクスのコントロールに用いることができるので、軽くて伝導性の高い材料の設計やドラッグデリバリー材料の設計などに重要な役割を果たすと考えられる。
|