Optimal quantum state estimation strategy in the presence of unknown environment
Project/Area Number |
17K05571
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Mathematical physics/Fundamental condensed matter physics
|
Research Institution | The University of Electro-Communications |
Principal Investigator |
Suzuki Jun 電気通信大学, 大学院情報理工学研究科, 准教授 (70565332)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 量子推定 / 量子ノイズ / 撹乱パラメータ / 量子Fisher情報行列 / 実験計画法 / 量子情報幾何 / 量子状態推定 / 最適な測定 / 量子Fisher情報 / 量子情報 / 統計学 |
Outline of Final Research Achievements |
In this project, we developed the general framework to analyze the parameter estimation problem when a quantum system of interest interacts with unknown environment. As the main result, we established the quantum estimation theory for quantum statistical models containing nuisance parameters. We extended the theory of optimal design of experiments to the more general setting such as quantum state and channel estimation problem. The proposed method were applied to find an optimal estimation strategy for quantum estimation problems in the presence of nuisance parameters. We characterized quantum statistical models based on the properties of tangent spaces. Our method aimed at unifying different choices of operator monotone metrics on the quantum state manifold in quantum information geometry. We applied our proposal to several examples in physical systems to illustrate effectiveness of our approach.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の意義は、量子精密測定技術の発展に不可欠な基本問題に対し、これまでの物理的なアプローチでは扱うことができなかった、特定のノイズモデルを仮定せずかつ不確定な要素を含むノイズの影響下での量子状態推定問題に対する最適な量子推定方法の統計学的な理論枠組みの構築と現実の物理モデルでの評価である。本研究の結果は、数理統計学・物理学・量子情報理論の融合性により得られるものであり、基礎科学研究として重要であるとともに、より現実的な問題設定での理論展開へとつながるので、今後の量子精密測定技術の発展につながることが期待される。
|
Report
(4 results)
Research Products
(27 results)