Trapping of superconducting micro-particle -- developement to the measurement of physical properties---
Project/Area Number |
17K05598
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Atomic/Molecular/Quantum electronics
|
Research Institution | University of Toyama |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
松島 房和 富山大学, 大学院理工学研究部(理学), 教授 (40142236)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | 超伝導 / 微粒子 / 磁気トラップ / 超伝導転移温度 / レーザーアブレーション / 超流動ヘリウム / 光散乱 / ミー散乱 / トラップ / ナノ粒子 |
Outline of Final Research Achievements |
Superconducting microparticles are produced by laser ablation of bulk material in a superfluid helium, and one of them is trapped in a space using magnetic field. The target of this study is to clarify the physical properties of this isolated single microparticle. (i) Indium microparticle can be pushed away from the center of the trap by the irradiation of a laser and on stopping the irradiation the particle moves in the trap potential. Analyzing the time evolution of the trace, the shape of the particle or the viscosity of helium were deduced. (ii) Although the scattering light intensity by a single microparticle is very small, we can measure the angle dependence of the scattering light by trapping the particle stably and prolonging the integration time of the observation. Analyzing the angle dependence, we obtained the particle size, and the optical properties of superconducting indium particle at the laser wavelength. These are new information for the indium as long as we know.
|
Academic Significance and Societal Importance of the Research Achievements |
超流動ヘリウム中で微粒子がレーザー照射によって力を受けることは、我々が初めて発見した現象であり,その機構を明らかにすることは重要である他,この力を用いて超流動ヘリウム中の微粒子の運動制御への応用,ヘリウムの物性,微粒子の物性,サイズなどに関する情報が得られると考えられる。超伝導体物質による光散乱(ミー散乱)は我々の調べた範囲では存在しないため,今回初めて測定に成功し,光物性に関する情報を導き出したことに意義がある。また,本手法で生成したレニウム微粒子の超伝導転移温度の大幅な上昇は,これまでの他の手法によるものに匹敵,あるいは上回っており,その機構を解明することは物理的に重要である。
|
Report
(4 results)
Research Products
(11 results)