• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on improving global atmospheric state prediction through the expansion of observational information

Research Project

Project/Area Number 17K05658
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Meteorology/Physical oceanography/Hydrology
Research InstitutionJapan, Meteorological Research Institute

Principal Investigator

Ishibashi Toshiyuki  気象庁気象研究所, 気象観測研究部, 主任研究官 (30585857)

Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywordsデータ同化 / 大気状態推定 / 数値天気予報 / 誤差共分散行列 / 観測データ / 誤差相関 / 観測誤差共分散行列 / 気象学
Outline of Final Research Achievements

In this study, by improving the accuracy of the error covariance matrix, the most important parameter in data assimilation, we relaxed the restrictions on assimilable observations for global atmospheric state analysis, and made it possible to assimilate a dramatically larger amount of observational information. This resulted in significant improvements in analysis and prediction accuracy and theoretical consistency. We showed that by increasing observational information, high accuracy can be obtained even when the adjoint model of the variational method is replaced by an ensemble forecast. The high-precision background error covariance matrix constructed by objective estimation through ensemble assimilation was analyzed based on network theory, and the basic properties of atmospheric perturbations were clarified.

Academic Significance and Societal Importance of the Research Achievements

大気はカオス系であり、その状態解析や予測の高精度化や理論整合性の向上は重要な科学的知見である。高精度な大気状態解析は、大気科学の発展に不可欠なデータセットの生成を可能にし、これらの発展にも不可欠である。ネットワーク理論による大気摂動の基本構造の解明は大気科学に新しい描像を提供する。また、データ同化を利用する他分野(海洋、固体地球、地球重力圏等)に広範囲に応用可能な普遍的知見となる。大気状態の解析や予測は社会基盤情報であり、その精度や理論整合性の向上は社会的にも重要である。

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (21 results)

All 2023 2022 2021 2020 2019 2018 2017 Other

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 2 results) Presentation (16 results) (of which Int'l Joint Research: 2 results) Remarks (1 results)

  • [Journal Article] Network Structure of Atmospheric Perturbations2023

    • Author(s)
      Ishibashi Toshiyuki
    • Journal Title

      Monthly Weather Review

      Volume: 151 Issue: 7 Pages: 1849-1861

    • DOI

      10.1175/mwr-d-22-0242.1

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 大気解析のための変分法データ同化における背景誤差共分散行列の根の定式化2022

    • Author(s)
      石橋俊之
    • Journal Title

      統計数理

      Volume: 70 Pages: 181-193

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Improvement of accuracy of global numerical weather prediction using refined error covariance matrices2020

    • Author(s)
      Ishibashi, T.
    • Journal Title

      Monthly Weather Review

      Volume: - Issue: 6 Pages: 2623-2643

    • DOI

      10.1175/mwr-d-19-0269.1

    • Related Report
      2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Adjoint-Based Observation Impact Estimation with Direct Verification Using Forward Calculation2018

    • Author(s)
      Ishibashi Toshiyuki
    • Journal Title

      Monthly Weather Review

      Volume: 146 Issue: 9 Pages: 2837-2858

    • DOI

      10.1175/mwr-d-18-0037.1

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 全球大気と地球表面状態等の結合同化に向けて2022

    • Author(s)
      石橋俊之
    • Organizer
      日本気象学会
    • Related Report
      2022 Research-status Report
  • [Presentation] 観測誤差共分散行列の流れ依存性2021

    • Author(s)
      石橋俊之
    • Organizer
      日本気象学会
    • Related Report
      2021 Research-status Report
  • [Presentation] Data assimilation of lightning observation data for global numerical weather prediction2020

    • Author(s)
      石橋俊之
    • Organizer
      JpGU-AGU Joint Meeting 2020
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Observation impact study in global numerical weather prediction2020

    • Author(s)
      石橋俊之
    • Organizer
      JpGU-AGU Joint Meeting 2020
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] 雷光観測の全球同化(序)2020

    • Author(s)
      石橋俊之
    • Organizer
      日本気象学会2020年度秋季大会,
    • Related Report
      2020 Research-status Report
  • [Presentation] 数値天気予報のための全球大気解析の高精度化に関する研究,2020

    • Author(s)
      石橋俊之
    • Organizer
      神戸大学惑星科学研究センターセミナー
    • Related Report
      2020 Research-status Report
  • [Presentation] 4次元の背景誤差共分散行列を使った4D-Varによるアンサンブル生成と決定論的解析(3)2019

    • Author(s)
      石橋俊之
    • Organizer
      日本気象学会2019年度春季大会, 2019年5月, 東京都渋谷区
    • Related Report
      2019 Research-status Report
  • [Presentation] Superposition of atmospheric states using information redundancy for Numerical Weather Prediction2019

    • Author(s)
      Ishibashi, T.
    • Organizer
      JpGU meeting 2019, 2019年5月, 千葉県千葉市
    • Related Report
      2019 Research-status Report
  • [Presentation] Numerical Weather Prediction Experiments using a Coupled Atmosphere-Ocean Data Assimilation System in JMA/MRI (3)2019

    • Author(s)
      Ishibashi, T.
    • Organizer
      JpGU meeting 2019, 2019年5月, 千葉県千葉市
    • Related Report
      2019 Research-status Report
  • [Presentation] 4次元の背景誤差共分散行列を使った4D-Varによるアンサンブル生成と決定論的解析(4)2019

    • Author(s)
      石橋俊之
    • Organizer
      日本気象学会2019年度秋季大会, 2019年10月, 福岡県福岡市
    • Related Report
      2019 Research-status Report
  • [Presentation] 全球解析に関する最近の研究から2019

    • Author(s)
      石橋俊之
    • Organizer
      第3回 理研・気象庁 データ同化に関する情報交換会, 2019年8月, 東京都
    • Related Report
      2019 Research-status Report
  • [Presentation] 航空機データの全球数値天気予報へのインパクトについて2018

    • Author(s)
      石橋俊之
    • Organizer
      日本地球惑星科学連合2018年大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 航空機データの全球数値天気予報へのインパクトについて2018

    • Author(s)
      石橋俊之
    • Organizer
      気象学会2018年度秋季大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 大気海洋結合データ同化2018

    • Author(s)
      石橋俊之
    • Organizer
      第2回 理研・気象庁データ同化研究会
    • Related Report
      2018 Research-status Report
  • [Presentation] 観測誤差共分散構造の診断とその利用(3)2017

    • Author(s)
      石橋俊之
    • Organizer
      日本気象学会
    • Related Report
      2017 Research-status Report
  • [Presentation] 4次元の背景誤差共分散行列を使った4D-Varによる アンサンブル生成と決定論的解析(2)2017

    • Author(s)
      石橋俊之
    • Organizer
      日本気象学会
    • Related Report
      2017 Research-status Report
  • [Remarks]

    • URL

      https://www.mri-jma.go.jp/Member/obs/kiishibashitosh.html

    • Related Report
      2020 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi