• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on Automatic Detection of Plasma Waves Based on an Engineering Approach

Research Project

Project/Area Number 17K05668
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Space and upper atmospheric physics
Research InstitutionJapan Aerospace EXploration Agency (2018-2019)
Nagoya University (2017)

Principal Investigator

Matsuda Shoya  国立研究開発法人宇宙航空研究開発機構, 宇宙科学研究所, 特任助教 (20772213)

Co-Investigator(Kenkyū-buntansha) 長谷川 達人  福井大学, 学術研究院工学系部門, 講師 (10736862)
Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywordsあらせ衛星 / 機械学習 / プラズマ波動 / UHR周波数 / 科学衛星 / 宇宙プラズマ波動 / ERG衛星
Outline of Final Research Achievements

We studied an automatic detection technique of "Whistler-mode chorus waves" and "hybrid resonance radiation" by using the data observed by PWE aboard Arase. In this study, we proposed an automatic determination system of plasma waves by machine learning. We confirmed that the proposed method using CNN more accurately determined plasma waves than did the conventional method.

Academic Significance and Societal Importance of the Research Achievements

科学衛星によって絶えず観測されるデータは,近年では特に膨大な量となり,科学解析を行うために要するイベントセレクションには,膨大な労力を必要とされてきた.科学者の本来の責務である科学解析をより円滑に進めるために,従来まで多くの人手を要してきた現象抽出・分類を,近年着目されている機械学習技術を用いて解決し,円滑なサイエンスアウトプットを実現する一端を担った.

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (9 results)

All 2020 2019 2018

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (8 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Automatic Electron Density Determination by using a Convolutional Neural Network2019

    • Author(s)
      Hasegawa, T, S. Matsuda, A. Kumamoto, F. Tsuchiya, Y. Kasahara, Y. Miyoshi, Y. Kasaba, A. Matsuoka, I. Shinohara
    • Journal Title

      IEEE Access

      Volume: 7 Pages: 163384-163394

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] CNNによる時系列連続性を考慮した宇宙自然電波の特性周波数検出2020

    • Author(s)
      近藤 和真, 長谷川 達人, 松田 昇也, 熊本 篤志, 土屋 史紀, 笠原 禎也, 三好 由純, 笠羽 康正, 松岡 彩子, 篠原 育
    • Organizer
      情報処理学会第82回全国大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Evaluation of Automatic Determined UHR Frequencies by a Convolutional Neural Network2020

    • Author(s)
      S. Matsuda, T. Hasegawa, A. Kumamoto, F. Tsuchiya, Y. Kasahara, Y. Miyoshi, Y. Kasaba, and A. Matsuoka
    • Organizer
      JpGU-AGU Joint Meeting 2020
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Evaluation of Automatic Electron Density Determination by using a Convolutional Neural Network2019

    • Author(s)
      S. Matsuda, T. Hasegawa, A. Kumamoto, F. Tsuchiya, Y. Kasahara, Y. Miyoshi, Y. Kasaba, and A. Matsuoka
    • Organizer
      第146回 地球電磁気・地球惑星圏学会講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Automatic determination of Upper Hybrid Resonance Frequencies by Convolutional Neural Network2019

    • Author(s)
      S. Matsuda, T. Hasegawa, A. Kumamoto, F. Tsuchiya, Y. Kasahara, Y. Miyoshi, Y. Kasaba, and A. Matsuoka
    • Organizer
      JpGU Meeting 2019
    • Related Report
      2018 Research-status Report
  • [Presentation] 畳み込みニューラルネットワークを用いたプラズマ波動データの自動識別2018

    • Author(s)
      壽慶 貴弘, 長谷川 達人, 松田 昇也, 笠原 禎也
    • Organizer
      計測自動制御学会 システム・情報部門 学術講演会 2018
    • Related Report
      2018 Research-status Report
  • [Presentation] CRNNを用いたプラズマ波動観測データからの特性周波数の自動検出2018

    • Author(s)
      長谷川 達人, 松田 昇也, 熊本 篤志, 土屋 史紀, 笠原 禎也, 三好 由純, 笠羽 康正, 松岡 彩子
    • Organizer
      計測自動制御学会 システム・情報部門 学術講演会 2018
    • Related Report
      2018 Research-status Report
  • [Presentation] A Machine Learning Approach for the Determination of Upper Hybrid Resonance Frequencies Observed by Arase2018

    • Author(s)
      S. Matsuda, T. Hasegawa, A. Kumamoto, F. Tsuchiya, Y. Kasahara, Y. Miyoshi, Y. Kasaba, and A. Matsuoka
    • Organizer
      地球電磁気・地球惑星圏学会 (SGEPSS) 2018
    • Related Report
      2018 Research-status Report
  • [Presentation] 機械学習を用いたプラズマ波動現象の自動識別2018

    • Author(s)
      袖川瑞, 長谷川達人, 松田 昇也, 笠原 禎也
    • Organizer
      電気学会北陸支部 平成29年度北陸地区学生による研究発表会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi