Establishing transition-state and excited-state calculation methods for large complicated electronic structure systems and their application to biomolecular reactions
Project/Area Number |
17K05738
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Physical chemistry
|
Research Institution | Hokkaido University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
赤間 知子 北海道大学, 理学研究院, 特別研究員(RPD) (60580149)
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 理論化学 / 量子化学 / 電子相関 / 大規模系計算 / 励起状態計算 / 遷移状態 / エネルギー勾配 / 遷移状態計算 / Hartree-Fock-Bogoliubov法 / 正準基底 / 静的電子相関 / エネルギー勾配法 / 複雑電子状態系 / 化学物理 / 電子状態理論 / 励起状態 |
Outline of Final Research Achievements |
In this research project, in order to establish a quantum chemical theory for enabling transition-state search and treating excited states of large systems with complex electronic structures, we have theoretically expanded and integrated three foundations: the divide-and-conquer (DC) method for calculating electronic structures of large systems, the Hartree-Fock-Bogoliubov (HFB) method for simply treating static electronic correlations, and the real-time time dependent (RT-TD) method for calculating excited states. In particular, for the DC method, we also developed a method to automatically control the error associated with the DC approximation.
|
Academic Significance and Societal Importance of the Research Achievements |
DC法は、従来は系の大きさに対して3乗以上の大きさで増加する計算時間を大幅に短縮することができるが、近似に伴い誤差が混入する問題があった。本研究により、生体内化学反応のような大規模系の反応過程の計算を、近似に伴う誤差を適切に制御しながら、実行することができるようになった。また、大規模で複雑な電子構造を持つ系の計算は、従来は専門家であっても難しいものであったが、これを簡便に実行可能なDC-HFB法と、これを用いた構造・遷移状態最適化手法の開発に成功した。
|
Report
(5 results)
Research Products
(29 results)