THz-driven low-temperature photoreaction dynamics of hydrogen-bonded networks
Project/Area Number |
17K05825
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Functional solid state chemistry
|
Research Institution | Tohoku University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
松井 広志 東北大学, 理学研究科, 准教授 (30275292)
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 生物物理化学 / テラヘルツ分光法 / 第一原理計算 / テラヘルツ分光 / 水和塩イオン / 弱い水素結合 / 生体適合性 / 分散力 / ファンデルワールス力 / 非調和性 / 複合物性 / テラヘルツ分光学 |
Outline of Final Research Achievements |
The purpose of this study is to elucidate the low-temperature photoreactive dynamics by terahertz waves and to develop their applications, using the formation and cleavage of hydrogen-bonded networks observed in the temperature-dependent terahertz spectral spectrum as an index. Terahertz and synchrotron infrared spectrum measurements and first-principles calculation were performed on microcrystal samples of five water-soluble vitamins, amorphous sample DMAPS showing biocompatibility, and single crystal samples of vitamins that capture hydrated salt ions. The structure of the harvested single crystal sample was determined by low-temperature X-ray crystallographic analysis. In particular, the anharmonicity evaluation, the replacement of the temperature effect by the permittivity, and the capture of liquid-like hydrated salt ions into a single crystal, which were developed in this study, provide useful information to pursue terahertz-driven low-temperature photoreactive dynamics.
|
Academic Significance and Societal Importance of the Research Achievements |
生体内で営まれている室温の熱エネルギーを利用した物理化学過程は、いくつかの熱振動が同時に起こることで進む。特に、水素結合ネットワークの果たす役割は見逃せない。様々な水素結合ネットワークを有する物質についての厳密な理論解析をベースにした一連の本研究成果は、テラヘルツ波による生体物質の機能発現制御という、テラヘルツ波の利点を生かした新しい応用の道の開拓につながる。また、最近26%近い効率を記録した太陽電池材料ペロブスカイトにおいて、高効率の鍵となる機構はテラヘルツ光のアップコンバージョンであり、厳密な理論解析に基づく本研究成果は新たな持続可能エネルギー材料の設計にも寄与すると期待できる。
|
Report
(5 results)
Research Products
(43 results)