Project/Area Number |
17K05882
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Polymer chemistry
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | 磁場配向 / 固体NMR / in situ測定 / 単結晶解析 / 微結晶懸濁体 / 化学シフトテンソル / in-situ測定 / 高分子構造 / in-situ解析 |
Outline of Final Research Achievements |
A probe for measuring solid-state NMR of a Magnetically Oriented Microcrystal Suspension (MOMS) was developed. In this probe, a sample tube is rotated around an axis perpendicular to the static magnetic field (B0) but temporally stopped at the direction of the B0 every 180°. Under such a modulated rotation, the microcrystals in a liquid medium are aligned three-dimensionally by a torque arising from the anisotropic bulk magnetic susceptibility of the crystal. We obtained in situ solid-state 13C NMR spectra, which contains information on chemical shift anisotropy, by using the developed probe. Through the fitting analysis for the obtained NMR spectra, chemical shift tensors of microcrystals in a liquid were completely determined. These results clearly show that the in situ solid-state NMR of MOMS with the developed probe can be a powerful means to determine anisotropic interactions in NMR directly from the microcrystals dispersed in a liquid medium.
|
Academic Significance and Societal Importance of the Research Achievements |
汎用高分子や天然多糖,タンパク質・生体化合物など,高分子においてはX線回折や固体NMRといった主たる構造解析手法のための単結晶試料を準備することが難しい.本研究で開発した磁場配向微結晶懸濁体のin situ固体NMRを使用すれば,液体中にある微結晶から直接単結晶NMR解析を行うことができる.また,同手法は単結晶化が困難な物質の直接的な構造解析を可能とするだけでなく,生理条件下等でのin situ測定を介したダイナミクス・機能解析への道を拓くものである.よって,高分子構造・機能学等への波及効果はもちろん,生体分子の機能解明や創薬・医療工学への寄与の観点から社会的意義も極めて大きい.
|