Template photopolymerization using DNA
Project/Area Number |
17K05886
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Polymer chemistry
|
Research Institution | University of Hyogo |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 鋳型重合 / DNA / 分子集積体 / 光増感 |
Outline of Final Research Achievements |
In order to investigate template photopolymerization using DNA, 1,4-diphenyl-1,3-butadiyne derivative having macrocyclic polyamine zinc (II) complexes, which act as a receptor for the thymine base in DNA, was prepared. UV-vis titration study of the butadiyne derivative with oligo-dT DNAs as a titrant showed that the butadiyne derivative could be assembled in the presence of oligo-dT DNA to form stacked butadiyne arrays. Upon photoirradiation of the butadiyne arrays, the absorption bands derived from butadiyne decreased with the increasing of the absorption band derived from photoproduct. The photoproduct was identified as a polymerized butadiyne derivative by using MALDI-TOF-MS spectroscopy. On the other hand, the photoirradiation of the butadiyne derivative in the absence of oligo-dT DNA yielded no photoproduct. Therefore, the butadiyne derivative can photopolymerize in the butadiyne arrays, the assembling with oligo-dT DNAs plays a critical function in the photopolymerization.
|
Academic Significance and Societal Importance of the Research Achievements |
人工DNAを分子集積体の単なる鋳型材料だけでなく、分子量と立体規則性が制御された高分子の合成反応場へと展開できる。つまり、人工DNAの分子認識能を利用して、希薄溶液中の反応性分子を局所的に集積して反応を加速させる特殊反応場(触媒)としての機能を開拓できる点に学術的意義がある。さらに人工DNAの高分子合成の鋳型材料としての新しい機能が発見でき、ナノテクノロジーの魅力ある素材としての知識の蓄積に貢献できる。将来、すべてのDNA塩基に対して受容体を使った鋳型重合が実現できれば、塩基配列をプログラムした人工DNAを鋳型にすることにより、配列制御型の高分子合成への展開も期待できる。
|
Report
(4 results)
Research Products
(34 results)