Project/Area Number |
17K05997
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Polymer/Textile materials
|
Research Institution | Kobe University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 高分子微粒子 / 光反応 / 中空粒子 / カプセル粒子 / 刺激応答性 / 機能性微粒子 / 異形粒子 / カプセル / 界面 / 高分子合成 / 微粒子 / 界面反応 / 光化学 / 高分子構造・物性 / 複合材料 |
Outline of Final Research Achievements |
In this project, we developed the new strategy “interfacial photo-crosslinking” to prepare the functional polymer particles. Utilizing interfacial photo-crosslinking towards spherical polymer particles bearing the [2π+2π] photo-reactive groups and subsequent removal of non-crosslinked polymer, shell-crosslinked hollow polymer particles were successfully obtained. The solvent exchange procedure lead to the posteriori encapsulation of the various molecules such as fluorescent dye and anti-cancer drugs, resulting in the fabrication of capsule particles. By introducing various functions such as stimuli responsive properties to the seed spherical polymer particles, various stimuli responsive capsule polymer particles were successfully created by the interfacial photo-crosslinking. Furthermore, the non-spherical bowl-shaped polymer particles were also successfully created by the spatially controlled photo-induced crosslinking.
|
Academic Significance and Societal Importance of the Research Achievements |
中空高分子微粒子は、化粧品や断熱塗料などの産業分野で用いられるだけでなく、内部に機能性分子を内包しカプセル化することで、生体イメージング材料や薬物送達による医薬品としての応用可能な機能性材料として展開できる。本研究で確立する界面光架橋反応を利用した機能性中空・カプセル粒子創製法は、産業界で広く用いられている中空・カプセル粒子の簡便かつ安全な新規合成技術として提案できるだけでなく、微粒子材料を応用した上述の様々なアプリケーションの発展に繋がると予想され、合成分野の領域を超えた広範な波及効果が期待できる。
|