Deformation and fracture of porous polymer membranes
Project/Area Number |
17K06062
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Materials/Mechanics of materials
|
Research Institution | Chuo University |
Principal Investigator |
Yonezu Akio 中央大学, 理工学部, 教授 (40398566)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2018: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | 多孔質高分子膜 / 変形 / 破壊 / その場観察法 / 有限要素法 / その場観察 / 機械材料・材料力学 |
Outline of Final Research Achievements |
This study developed computational modeling for deformation and fracture of porous polymer membranes. First, we developed a loading device for in-situ observation using X-ray CT, scanning electron microscope(SEM), atomic force microscope(AFM) in order to examine the microscopic mechanics for the porous strucure (micro/nano pores) during tensile loading. Furthermore, macroscopic deformation and fracture characteristics of the polymer film are evaluated by using the displacement field measurement by digital image correlation method. Finally,mechanical modeling for the porous polymer membrane is constructed by finite element method (FEM) that models the three-dimensional structure of the porous structure. The created structure model considers actual in-homogeneous characteristics and it enables not only macroscopic mechanical response but also microscopic deformation behavior during uni-axial loading.
|
Academic Significance and Societal Importance of the Research Achievements |
マイクロ・ナノポア細孔を有する多孔質高分子膜の変形および破壊特性を明らかにできる.特に,細孔構造(サイズと配列)は負荷中に大きく変化するため,膜分離機能をつかさどる細孔の幾何学的な形状変化の制御手法が重要であり,本解析法によって実現できると期待している.したがって,本研究の成果は,今までの経験に基づく多孔質膜の開発から,ナノ・マイクロ構造の力学シミュレーションに基づく膜開発へ移行できると思われる.つまり,膜分離機能(ろ過性能)の検討や物理的洗浄の最適化,さらには材料自身の長寿命化(損傷や破壊の制御)が試行錯誤を伴うことなく容易に達成でき,開発スピードが格段に速まることが期待される.
|
Report
(4 results)
Research Products
(72 results)