Project/Area Number |
17K06165
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Fluid engineering
|
Research Institution | Kagoshima University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 流体力学 / 超音速流 / ノズル / コールドスプレー / 流体工学 |
Outline of Final Research Achievements |
1) The temperature recovery factor r for the turbulent boundary layer on a flat plate is said to be Prandtl number to the power 1/3. In the present research, therefore, r was set at 0.89 for the trial analysis. However, it resulted in unacceptable incoincidence against the validation Mach number. 2) The temperature recovery factor of the internal supersonic flow of the Mach number range 1.0-1.5 is found to be almost r=0.845 for the present experimental conditions. It results in good agreement with the validation Mach number, except the region close to the nozzle exit. 3) Mach number obtained by the present method in the nozzle exit region is much smaller than the validation Mach number. This will be due to the heat transfer from the ambient air to the nozzle exit plane, destroying the assumption of the adiabatic flow.
|
Academic Significance and Societal Importance of the Research Achievements |
内部流れの静圧や速度を測定する際,現在の測定法では静圧孔や観測窓を設置する必要があり,そのために流路を加工しなければならない.研究用の流路であればそれでよいが,加工が許されない実用管路,または物理的に加工が困難な微小径の管路内を流れる流体の圧力や速度を定量的に測定することはできず,またそのような測定技術は,現在存在しない.流路を加工する必要のない流体測定技術は,ノズル製品の検査,使用中の管路の流動診断,マイクロ流路内の流動診断などで有用である. 本研究により,ノズル外表面温度からノズル内流れの圧力やマッハ数を定量的に診断する方法について,技術的な見通しが得られた.
|