Elucidation and control of thermal transport characteristics of nanoscale solid-liquid interface complex toward the creation of novel thermal materials
Project/Area Number |
17K06182
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Thermal engineering
|
Research Institution | Tohoku University |
Principal Investigator |
Ohara Taku 東北大学, 流体科学研究所, 教授 (40211833)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 固液界面 / 熱輸送 / 界面熱抵抗 / 分子動力学 / 固液複合系ナノ材料 / 複合系ナノ材料 / 分子熱流体 / 表面・界面 / 熱工学 / 熱物性 / 熱抵抗 |
Outline of Final Research Achievements |
This is a fundamental study on establishing novel thermal media utilizing special (i.e., different from bulk liquids and solids) heat transfer characteristics over solid-liquid interfaces, which can be realized by using macro scale media made of solid-liquid interfaces exclusively such as multiple solid and liquid layers having thicknesses of 0.3 - 10 nm. Large-scale molecular dynamics simulations have been performed to analyze heat transfer characteristics of solid-liquid interfaces and thin liquid films sandwiched by two solid walls. It was found that the heat transfer characteristics change much influenced by some factors which include liquid film thickness, lattice-scale structure of solid surfaces, and adsorption density of liquid molecules on the solid surfaces, which leads to a new control technology of the heat transfer media by utilizing these factors as control parameters.
|
Academic Significance and Societal Importance of the Research Achievements |
固体表面間の空隙を埋めて熱的接触を向上させるTIM(熱界面材料)や蓄熱材料など、熱輸送特性を制御できる熱媒体には大きな可能性がある。本研究は、近年急速に注目が集まりつつある固液界面の熱輸送特性を利用して、このような熱媒体を構成しようとするもので、固体層・液体層の重畳によりバルク液体・固体とは異なる特性をもつマクロスケールの媒体を創成しようという新しいアイディアに拠っている。固液界面の特性や支配因子は明らかになっていないことが多いが、本研究はその制御を目指したものである。
|
Report
(4 results)
Research Products
(9 results)