Optimization of Thermal Shield Performance and Heat Transfer Enhancement on Dimpled Surface by Using Cooling-Flow Pulsation
Project/Area Number |
17K06188
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Thermal engineering
|
Research Institution | Tokyo University of Agriculture and Technology |
Principal Investigator |
Murata Akira 東京農工大学, 工学(系)研究科(研究院), 教授 (60239522)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | フィルム冷却 / 脈動流 / 伝熱促進 / ガスタービン翼 / ディンプル / 非定常法 / 流れの可視化 / LES / 熱工学 / 流体工学 / エネルギー効率化 / 省エネルギー / 可視化 |
Outline of Final Research Achievements |
Cooling at trailing edge of gas turbine airfoil is one of the most difficult problems because of its thin shape: high thermal load from both surfaces, hard-to-cool geometry of narrow passages, and at the same time demand for structural strength are the reasons. The objective of this study is to further improve the trailing-edge film cooling performance by using cooling-flow pulsation. Heat transfer coefficient and film cooling effectiveness on cutback surface were measured by a transient infrared thermography technique with consideration of three-dimensional heat conduction. The flow field was measured by a stereo PTV method. Furthermore, numerical analyses were performed by LES and DNS methods. The measurements and computations were performed by varying the pulsation parameters and the cutback-surface geometries. From the results, optimum values were identified and the principle of the thermal shield and convective cooling by the cooling-flow pulsation was explained.
|
Academic Significance and Societal Importance of the Research Achievements |
高出力,高効率なガスタービンは航空機用,定置発電用に加え,その高速起動性・移動性により分散型・非常用電源としても高い関心を集めている.本研究は,高温化によるガスタービン熱効率向上の伝熱工学的制約(冷却困難部位)である翼後縁部のフィルム冷却を研究背景として,熱遮蔽性能維持下での伝熱促進という新しい問題設定をする.そして定常冷却流でのこれまでの成果を発展させ,冷却流の脈動化によるさらなる性能向上とその原理説明を行い,エネルギー変換の高効率化とCO2削減に寄与する.
|
Report
(4 results)
Research Products
(14 results)